网站:www.secmizoram.in电子邮件:sec_mizoram@yahoo.com州选举专员(0389-2300180(O),2300378(f)州秘书,州选举委员会(0389-2300380(0389-2300380) 2300379(f)
摘要:随着物联网的出现,城市将很快被自动驾驶汽车填充,并由能够与城市基础设施和车辆积极互动的智能系统管理。在这项工作中,我们提出了一个基于强化学习的模型,该模型教授自动连接的车辆如何在这种环境中进行导航时如何节省资源。尤其是在基于拍卖的交叉管理系统的背景下,我们专注于预算节省。,我们通过不同的交通条件进行了一些深入的Q学习训练,以在节省货币和旅行时间之间的权衡方面找到最有效的变体。之后,我们将模型的性能与先前提出的随机策略进行了比较,即使在不利的交通状况下也是如此。我们的模型似乎很强大,并设法节省了大量货币,而无需大大增加流量的等待时间。例如,学习者出价者在交通繁忙的情况下节省了至少20%的预算,相对于标准投标者,较轻的交通量高达74%,并且节省了随机投标者的三倍。结果和讨论表明,在预见的未来现实生活中,该提案的实际采用。