摘要:近年来,人们对自然通风解决方案的兴趣日益浓厚,将其作为实现可持续和节能建筑设计的一种手段。风捕器是一种古老的中东建筑元素,现已成为现代建筑中可行的被动冷却装置,从而提高了室内空气质量,减少了对机械通风系统的依赖。据推测,集成上翼墙 (UWW) 可以通过优化风捕获、空气循环和热调节来增强风捕器的有效性。因此,本研究旨在探索将双面风捕器与 UWW 结合起来的影响,特别强调 UWW 角度对建筑空间内通风性能的影响。为了实现这一目标,进行了一系列数值模拟,以评估风捕器和翼墙配置在不同 UWW 角度和不同风速条件下的协同作用。作为研究方法的第一步,通过比较数值结果和实验数据来验证 CFD 模型。研究结果表明这些方法之间具有良好的一致性。在下一阶段,对不同 UWW 角度(范围从 0 ◦ 到 90 ◦)的捕风器进行了严格评估。结果表明,30 ◦ 角的配置在关键通风参数(包括气流速率、换气率和空气平均年龄)方面表现出最佳性能。最后,对选定的配置在不同风速条件下进行了评估,结果证实即使在低风速条件下,捕风器也能提供符合标准要求的通风水平。
摘要:ACFA 2020(柔性飞机主动控制)是欧盟委员会第七研究框架计划资助的合作研究项目。该项目涉及 2020 年飞机配置(如翼身融合 (BWB) 飞机)的创新主动控制概念。ACFA 的主要目标是设计一种新型超高效 450 座 BWB 型飞机,以及为此类飞机提供强大的自适应多通道控制架构。新设计的控制器的目标是雄心勃勃地改善乘坐舒适度和操控品质,以及减轻 BWB 型飞机的负荷。根据实现的负荷减少,可以调整 450 座飞机的结构尺寸,以实现雄心勃勃的减重目标,从而进一步提高燃油效率。主动控制要求分别影响控制面和整体飞机设计的设计过程。因此,传统的飞机设计流程必须适应新的要求。本文描述的飞机设计框架已在 ACFA BWB 飞机的开发中证明了其效率。在一年的时间内,在多个领域要求的约束下开发了机身。本文介绍了 BWB 飞机设计活动的过程和结果,为详细概念分析以及多输入多输出控制架构的研究奠定了基础。
扑翼飞行器(flapping Wing Aircraft,简称FWA)是一种折叠机翼的飞行器,通过模仿昆虫、鸟类或蝙蝠等折叠机翼上下扇动来产生升力和推力的飞行器。近年来,仿生扑翼飞行器的研究日益增多,提出了多种结构形式的扑翼飞行器。扑翼飞行器飞行环境与鸟类或大型昆虫相似,如低雷诺数的类流体动力学和非定常气动动力学[1,2]。飞行过程中,扑翼生物的运动学模型通常具有颤振、摆动、扭转和伸展4个自由度[3]。Thielicke[4]研究了不同弯度和厚度的鸟类臂翼和手翼在慢速飞行过程中的气动特性。传统的仿生扑翼飞行器运动学模型只考虑颤振和扭转2个自由度。本文在传统四自由度折叠机翼运动学模型基础上,增加了平面内折叠和非平面折叠两个自由度,采用拟常数模型与考虑洗边效应的初始理论相结合的四自由度运动学模型气动建模方法,通过多刚体有限元法建立纵向动力学模型,采用Floquet-Lyapunov方法分析开环纵向稳定性,采用鲁棒变增益控制方法分析闭环纵向稳定性。
旋翼飞机为探索外星环境提供了独特的功能。与诸如漫游者之类的勘探工具相比,旋翼船能够越来越快地到达感兴趣的目的地。此外,它们只需要合适的起飞和降落区,并且可以飞越由于障碍物或粗糙地形而可能无法遍历流浪者可能无法穿越的地形。这些优势激发了火星的创造任务,该任务涉及第一个飞行火星的旋翼飞机[1]。这项任务的成功继续激励未来的任务,例如可能使用直升机来返回火星样本[2]。设计一种在火星氛围环境中运行的首个旋翼飞机,需要进行设计,开发和操作的独特工具。在开发的工具中是Helicat-darts(简单地称为简洁的Helicat),用于旋转动力学建模和仿真。此仿真工具是指导,导航和控制(GNC)算法和软件开发的测试床,并作为分析飞行性能和动态的工具。Helicat在Ingenuity任务的整个生命周期中都使用,包括以下内容:
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年4月1日发布。 https://doi.org/10.1101/2024.03.28.585318 doi:Biorxiv Preprint
摘要目的是评估随机对照试验(RCT)对运动对所有人群和年龄段一般认知,记忆和执行功能的影响的系统评价。方法对RCT进行系统评价和元分析,评估运动对一般认知,记忆和执行功能的影响符合条件。进行了数据提取和偏差评分的风险。评估系统审查的测量工具(Amstar-2)用于评估偏见的风险。使用随机效应模型合并效应大小,并报告为标准化平均差异(SMD)。亚组分析,以实现参与者和干预特征。主要结果衡量一般认知,记忆和执行功能。数据来源Cinahl,Cochrane图书馆,Embase,Medline,通过Ovid,Emcare,Proquest Central,Proquest Nursing和Allied Health Source,Psycinfo,Scopus,Scopus,Sport Fissus和Web of Science。结果包括133次系统评价(2,724 RCT和258 279名参与者)。练习显着改善了一般认知(SMD = 0.42),内存(SMD = 0.26)和执行功能(SMD = 0.24)。与成年人和老年人相比,儿童和青少年的记忆和执行功能改善的运动更大。与其他人群相比,患有注意力/多动症的人的执行功能表现出更大的改善。效果通常更大。发现在排除评分为低质量低下的评论后,在统计学上仍然很重要。较短的干预措施(1-3个月)和Exergames(需要身体运动的视频游戏)对一般认知和记忆的影响最大。结论这些发现提供了有力的证据表明,锻炼,甚至光强度,使所有人群中的一般认知,记忆和执行功能都受益,从而加强了锻炼,作为优化认知健康的必不可少的,包括包容性的建议。试用注册号Prospero ID:CRD42023468991。
1 CNR,INSERM,BIOSIT UAR 3480,US-S018,RENNES UNIXPY,F-35000 RENNES,法国; kathy_yaacoub@hotmail.com(k.y。); ulrich.jarry@univ-rennes.fr(U.J.)2 Inserm,OSS(OSS(OSSESESION WESERASION SIGNAMENG TOMPENGENT),UMR-S1242,CLCC EUGYUGèMarquis,Rennes University,F-35000,法国Rennes,F-35000; remy.pedeux@univ-rennes1.fr 3 CNRS,ICOA,UMR 7311,ErléansUniversity,F-45067 ENSE ENS,法国; pierre.lafite@univ-orleans.fr(P.L.); samia.aci@cnrs-orleans.fr(s.a.-s.); pascal.bonnet@univ-orleans.fr(p.b.); Richard.daniellou@agroparisech.fr(R.D.)*通信:thierry.guillaude@univ-rennes1.fr或tguillaude@kineta.us.us†现在的地址:Cosmétology,Agroparistech,Agroparistech,10 Rue Onard de vinci,F-45100 Erl f-45100 Erlerléples,法国法国。•目前的地址:Inrae,Agroparistech,Umr Micalis,Paris-Saclay University,F-78350 Jouy-en-Josas,法国。
事实上,前段时间她曾去过雨伞市场买零件;他在寻找的时候看到了一把坏了的雨伞,他走近并大致了解了如何使用各个碎片,然后选出当时最合适的那一个。当他试图拆下伞柄时,听到一个小小的声音说:“哎哟,哎哟!”你想让我一个人呆着,你这个丑陋的母夜叉,别碰我,你会伤害我的!帕斯夸罗娜奶奶哑口无言:“什么?一把会说话的雨伞?于是雨伞告诉她,他是 1 到 10 团队的一员,这是一支由雨伞组成的团队,他们聚在一起玩游戏。«黄队的伞跟我开玩笑,说我们的队伍赢不了,我们不会玩,我们不够强等等»。«有一天,在一场比赛中,那把恶毒的雨伞让我摔倒了,所以我现在发现自己在这里,不能再在数字队中比赛了»。数字队由十把伞组成。每次比赛时,十把伞被分成两队,每队五人:绿队和黄队。每把伞都有自己的编号:
被认为与治疗反应有关。这样的主协议通常称为雨伞试验(1,2)。从概念上讲,伞设计只是一组并联运行的(子)试验。具有一系列吸引人的优势,包括:(i)在一次试验中可以回答几个与治疗相关的问题,(ii)可能减少所需的患者人数(例如,包括常见的控制臂),以及(iii)加急药物开发,较短的试验持续时间和较短的试验和较低的成本,相对于传统的临床临床较短的临床试验,独立于跑步的临床试验(3,4)。然而,在伞试验的进行中可能会出现许多统计复杂性,包括但不限于对自适应设计元素的渴望,贝叶斯/频繁的决策规则之间的选择,适当的样本量计算,是否借用信息以及如何控制特定的错误率。适应此类考虑因素的解决方案通常会根据所选伞设计和研究特定要求的变体而有所不同;例如,进行后期伞试验将意味着对误差控制的要求更为严格。最近,复杂的(混合)设计还出现了,这些设计模糊了伞设计与其他相关的主协议设计之间的界限,这些设计提出了更有趣的统计问题。从2018年到2019年的评论发现,迄今为止,几乎所有的伞试验都已在肿瘤学中实施,大多数是I期或II期,并纳入了随机化的使用(5,6)。值得注意的是,相对于其他关键主协议(6,7),实施的伞试验较少:平台试验(允许促进新的治疗臂或患者亚组)和篮子试验(其中对具有常见治疗靶点的多种疾病进行了靶向治疗的评估)。雨伞试验的相对罕见性可能部分地表明,尽管他们有优势,但在其设计和分析方面仍有有限的指导。相比之下,已经提出了一些针对篮子和平台试验的设计。这些因使用的统计分析技术,可以合并的决策规则以及涵盖药物开发的不同目的或阶段而有所不同(8-16)。尽管有许多有关总体协议的评论,但它们一直致力于提供总体协议的景观分析,通常提供有关各种试验设计的高级讨论,文献中的定义以及主要发布的示例(3,5,6,17)。尽管有几项工作讨论了主协议的统计分析方法,但它们集中在篮子和平台试验上(7,15)。此外,正如我们后来进一步提出的那样,非肿瘤学环境中的伞试验的当前和未来潜力是巨大的(18,19)。发表了有关雨伞试验的文章,几乎完全讨论了与肿瘤学相关的考虑因素。
摘要:针对共轴旋翼飞行器自主飞行过程中模型参数的不确定性、外界扰动及传感器噪声对飞行的影响,研究位置姿态反馈控制系统的鲁棒反步滑模控制算法,以解决未知外界干扰情况下飞行器的轨迹跟踪问题。本文针对未知飞行,建立了基于受扰共轴旋翼飞行器的非线性动力学模型。然后,设计了非线性鲁棒反步滑模控制器,分为共轴旋翼飞行器的姿态控制器和位置控制器两个子控制器。在控制器中引入虚拟控制,构造Lyapunov函数,保证各子系统的稳定性。通过数值仿真验证了所提控制器的有效性。最后通过飞行试验验证了反步滑模控制算法的有效性。