摘要 - 汽车传动轴将动力从变速器传输到汽车的后轮。传统上由钢制成的汽车传动轴材料现在由不同的材料制成,其中一些据称比传统材料更轻,有时更安全。这项研究使研究在选择传动轴、制造和车辆生命周期内的性能方面的关键材料参数成为可能。剑桥工程选择器 (CES) 生态审计工具用于选择最佳材料、成本和生态性能,例如二氧化碳产生、可回收性和生产能量。在本研究中,先进的材料概念已被用于分析汽车传动轴的一些特定部件,旨在提高性能。汽车传动轴开发的材料参数来自组合,例如混合铝/复合材料具有更高的扭矩传递能力、更高的基本自然弯曲频率以及更少的噪音和振动。此外,将粘弹性阻尼材料与复合材料共固化可以生产出重量轻、刚度大、阻尼性强的结构部件。研究表明,复合材料传动轴重量更轻,比强度相似的钢或铝轻,且具有柔韧性和较低的弹性模量,因此当传动系统出现扭矩峰值时,复合材料传动轴可以起到减震器的作用,通过减少应力来延长车辆寿命。复合材料也存在缺点,例如制造和材料成本高。
高性能碳化钨切削刀具由坚韧的钴基体制成,将坚硬的碳化钨颗粒粘合在一起;性能较低的刀具可以使用青铜等其他金属作为基体。 一些坦克装甲可能由金属基复合材料制成,可能是用氮化硼增强的钢,氮化硼是一种很好的钢增强材料,因为它非常坚硬,不会溶解在熔融的钢中。 一些汽车盘式制动器使用 MMC。早期的 Lotus Elise 车型使用铝 MMC 转子,但它们的热性能不太理想,Lotus 后来又改用铸铁。现代高性能跑车(例如保时捷制造的跑车)使用碳纤维转子,碳化硅基体具有高比热和导热性。3M 开发了一种预制铝基插入件,用于加强铸铝盘式制动钳,[7] 与铸铁相比,重量减轻了一半,同时保持了相似的刚度。3M 还将氧化铝预制件用于 AMC 推杆。[8] 福特提供金属基复合材料 (MMC) 传动轴升级。MMC 传动轴由碳化硼强化的铝基制成,可通过减小惯性来提高传动轴的临界转速。MMC 传动轴已成为赛车手的常见改装,可使最高速度远远超过标准铝制传动轴的安全运行速度。
第二单元 螺栓和焊接接头的设计 螺栓接头的设计:螺纹紧固件、螺栓预紧力、螺栓中产生的各种应力。螺栓拧紧的扭矩要求、垫片接头和偏心载荷螺栓接头。焊接接头:搭接和对接焊缝的强度、承受弯曲和扭转的接头。偏心载荷焊接接头。 第三单元 动力传动轴和联轴器 动力传动轴:承受弯曲、扭转和轴向载荷的轴的设计。使用冲击系数承受波动载荷的轴。联轴器:法兰和衬套销联轴器、万向联轴器的设计。
用于采矿、土木工程和建筑工业用的机械,即潜水泵、离心泵、泥浆泵、用于水池或坑内的泥浆泵、真空泵及其零件;用于采矿、土木工程和建筑工业(陆地车辆除外)的机器联轴器和传动部件;机械零件,即适用于采矿、土木工程和建筑工业的机械泵;上述泵的附件及备件,即:喉衬和弹性体衬套、吸入口盖、进水口吸入滤网、泵密封组件、填料函、副叶轮、泵叶轮、叶轮叶片和导流轮、泵基座、泵底座、泵架、有衬里或无衬里的泵壳、泵轴承组件、泵安装板和梁;循环液体介质用搅拌器;非陆地车辆用机械的离合器和联轴器;用于非陆地车辆的机器和发动机的控制电缆;用于采矿、土木工程和建筑行业的机器的过滤器;用于发动机和发动机的过滤器;非陆地车辆的变速箱和齿轮;用于非陆地车辆的机器的传动轴轴承和传动轴;机器的变速器;用于水处理的机器部件阀门(非上述任何一项)(美国 CLS。13、19、21、23、31、34 和 35)。
用于采矿、土木工程和建筑工业的机器,即潜水泵、离心泵、泥浆泵、用于水坑或坑内的泥浆泵、真空泵及其零件;用于采矿、土木工程和建筑工业(陆地车辆除外)的机器联轴器和传动部件;机器零件,即适用于采矿、土木工程和建筑工业的机器的泵;上述泵的附件及备件,即:喉衬和弹性体衬套、吸入口盖、进水口吸入滤网、泵密封组件、填料函、副叶轮、泵叶轮、叶轮叶片和导流轮、泵基座、泵底座、泵架、有衬里或无衬里的泵壳、泵轴承组件、泵安装板和梁;循环液体介质用搅拌器;非陆地车辆用机械的离合器和联轴器;用于非陆地车辆的机器和马达的控制电缆;用于采矿、土木工程和建筑工业的机器的过滤器;马达和发动机的过滤器;非陆地车辆的变速箱和齿轮;传动轴轴承和作为非陆地车辆机器零件的传动轴;机器的变速器;作为机器部件的阀门,非上述用于水处理的阀门(美国分类号 13、19、21、23、31、34 和 35)。
第一阶段海上试验。十四天后,伊丽莎白女王号进入因弗戈登港加油,检查传动轴和螺旋桨组件。她于 2017 年 7 月 24 日返回海上,进行速度、机动性、功率和推进力的进一步试验。这些试验成功完成,并决定前往朴茨茅斯,而不是按原计划返回罗塞斯,以保持进度。伊丽莎白女王号于 8 月 16 日成功进入朴茨茅斯海军基地,这距离她离开罗塞斯仅 8 周多一点。她停泊在新装修的皇家公主码头,那里有一个新的岸电设施。计划中的工程阶段正在进行中,第二阶段海上试验计划在秋季晚些时候进行。该部门预计将按照合同规定,于 2017 年底从 ACA 手中接管“伊丽莎白女王号”舰的所有权。
摘要:本研究描述了用于实验室环境的电子控制电阻负载组的设计过程、构建和测试。负载组的基本特性来自前期工作的初步设计。负载组是飞机混合动力推进试验台的一部分,用于静态分析,旨在降低成本和提高操作安全性。它旨在模拟飞机螺旋桨在稳定状态下以不同转速施加到传动轴上的可变机械载荷。由发电机 (EG) 供电,它可以分步施加电阻载荷,然后由发电机转换为机械载荷。设计、构建和组装了容纳电阻元件和冷却风扇的支撑框架。开发了两个传感器板来测量电压和电流。负载组的控制器由 Arduino 板实现,采用实时操作系统 (RTOS),并通过控制器局域网 (CAN) 总线与计算机上的监控系统通信。该程序的用户界面是作为 Windows Forms App 创建的,以便于使用和实时监控银行的运营。构建了一个单负载分接头并对其进行了测试,以验证传感器性能并获取热响应曲线。结果表明,该系统运行可预测且可靠,这鼓励了进一步的开发。
一辆用于运输人员和货物的车辆,汽车通常在道路上使用发动机进行电源运行。如今,汽车通过提供便利,舒适性和效率来在日常生活中发挥至关重要的作用。自发明以来,汽车发生了重大变化。第一辆汽油动力汽车是由卡尔·本茨(Karl Benz)于1885年发明的,标志着连续创新的开始。从蒸汽动力的车辆到现代电动汽车,汽车的历史充满了关键的发展,这些发展塑造了我们的生活方式和旅行习惯。本文探讨了汽车历史上的关键时刻,分类,重要系统及其运作方式,以帮助了解汽车的演变及其在现代生活中的作用。讨论包括汽车的历史,它们的分类,关键部分和系统,以及它们工作方式的概述。第一辆汽车由卡尔·本茨(Karl Benz)于1885年发明,由单缸发动机提供动力,每小时可能达到10英里。它以其轻巧的设计和转向系统而闻名。在1888年,贝莎·奔驰(Bertha Benz)在奔驰专利汽车Wagen进行了长时间的旅行,推广了汽车,并导致了Benz&Cie的首次商业作品。随着时间的流逝,汽车通过创新和不断变化的需求而发展。由蒸汽动力,汽油动力,柴油动力和混合动力汽车的时代均有助于现代汽车的发展。关键人物,例如Nicolas-Joseph Cugnot,Richard Trevithick,Karl Benz,Gottlieb Daimler,Rudolf Diesel和其他人为汽车历史做出了重大贡献。了解汽车的历史和运作能力可以为它们对现代生活的影响及其持续发展提供宝贵的见解。汽车的开发是由于需要更快,更轻,更有效的车辆的需求,从而创造了不同类型的发动机和燃料。从蒸汽动力汽车到混合动力汽车,每个时代都建立在上一辆汽车上,从而导致了我们今天看到的各种汽车。通过检查汽车的历史和关键系统,我们可以欣赏它们在我们的日常生活中扮演的重要角色及其未来创新的潜力。混合技术通过减少汽油和电力的燃油消耗和排放来彻底改变汽车行业。第一款商业上成功的混合动力汽车丰田普锐斯(Toyota Prius)于1997年推出,标志着向环保车辆的转变。电动汽车(电动汽车)由于推动清洁能源而闻名,早期电动汽车的历史可以追溯到19世纪后期。现代进步,尤其是特斯拉的进步,使电动汽车更加可行。尽管具有可持续性,EVS仍面临电池技术和充电基础设施的限制。汽车有多种类型,每种都为特定的需求和功能而设计。这些车辆可以根据传输系统,车轮数量,燃油类型等进行分类。例如,汽车可以具有手动,自动或CVT传输。车轮的数量还可以将汽车分类为两轮车,三轮车,四轮摩托车,六轮摩托车,甚至具有超过六个车轮的车辆。汽车由不同的燃料提供动力,包括汽油,柴油,电气和混合动力。这会导致各种类型的汽车,每辆汽车都基于它们使用的燃料。此外,可以将车辆分类为由内燃机(ICE),电动机或混合动力系统提供动力的车辆。发动机的位置和驱动器的类型还导致各种配置,例如前引擎前轮驱动,后引擎后轮驱动或中引擎后轮驱动。汽车车身风格和复杂的系统汽车可以根据其身体样式进行分类,包括敞篷车,越野,半转换,掀背车,轿跑车,轿车,轿车,轿车,小接口和交叉。汽车由各种复杂的系统和组件组成,每个系统都在确保车辆平稳运行方面发挥着至关重要的作用。发动机是通过内部燃烧产生动力,将燃料和空气转换为机械能的重要组件。曲轴在将扭矩从发动机转移到变速箱中起着重要作用。传输系统通过从发动机传输到车轮来调节速度和扭矩。燃油系统由关键组件组成,例如燃油箱,燃油泵,化油器和喷油器。这些组件共同起作用为发动机提供燃料以燃烧。汽车的主要内部零件,包括曲轴,电池,点火线圈和火花塞,都可以一起移动。位于发动机块上的曲轴使用电池中的电源将发动机的能量转换为运动。1。22。23。它由驱动发动机飞轮的电动机和小齿轮组成。汽车还需要一个可靠的制动系统来安全地放慢速度。该系统具有多个关键组件,例如脚步井中的刹车踏板和每个轮子上的制动卡钳。制动卡钳使用液压活塞和金属壳体施加压力,以控制制动。除了这些必需品之外,还有其他关键部分,例如主缸,制动液,制动线,制动器助力器,排气歧管,消音器,轮胎,轮子轮毂,底盘和车身面板,都促进了汽车的功能。底盘是所有车辆组件的结构框架,在发动机,悬架和车身面板安装在其上时提供了支撑。汽车本质上是由相互联系的系统组成的,例如发动机,电气系统,制动系统,排气系统,转向系统,悬架,轮胎和机箱,可帮助其有效地移动。车辆运动的旅程始于其发动机,该发动机通过内燃机将燃料转化为机械能,从而将化学能量转化为动能并启动传统车辆的功率流。相比之下,电动汽车从电池组开始,将电能存储为DC,然后通过电源逆变器转换为AC,以便电动机为电动机供电,从而产生机械能以驱动车轮。变速箱在调节发动机的功率方面起着至关重要的作用,并根据车辆的速度和负载对其进行调整。活塞运动 - 各种类型,周期和配置2。通过使离合器接合,发动机的功率将平稳地转移到变速箱上,从而实现了精确的齿轮移动,并有效地控制了扭矩和速度。驱动轴然后将旋转运动从变速箱传输到差速器,以确保不间断的功率流。差速器从传动轴接收功率,并将其分配到车轮,调整每个车轮的旋转以允许不同的速度,尤其是在轮流时。连接到差速器,车轴直接传递到车轮的传输功率。最终,车轮将旋转能量转换为正向运动,轮胎提供了必要的牵引力来抓住道路,从而将车辆前进。转向涉及一个组件的顺序系统,这些系统会改变前轮的方向。它是从驾驶员使用方向盘启动转弯运动开始的,该运动通过转向柱传输到转向器。这种机制将旋转运动转换为线性运动,移动的拉杆将推动和拉动以根据需要转动车轮。转向指关节安装在车轴上,允许车轮根据拉杆的输入进行枢转和转向。制动对于车辆的控制和安全至关重要,涉及各种系统以阻止汽车的系统。当驾驶员按下制动踏板时,该过程始于制动动作。取决于车辆,涉及不同的制动系统,包括机械,液压或气动系统,每个系统都具有不同的机制,可以在每个车轮上摄制制动器。24。25。25。车辆中的制动系统在确保道路上的安全和控制方面起着至关重要的作用。制动系统有两种主要类型:液压和气动。液压制动器使用流体压力将力从制动踏板传输到车轮,而气动制动器则使用压缩空气。两种类型都涉及各种组件,包括主缸,卡尺,鼓或鞋子,它们共同使用,将动能转化为热量,从而减慢车辆。制动过程涉及几个关键要素:液压或气动流体压力,制动垫和转子(用于盘式制动器)以及与道路相互作用的轮胎。每个组件在确保有效制动和整体车辆性能中起着至关重要的作用。SI和CI发动机的燃油系统主要组件3。排气系统目标和减少排放的关键组件4。润滑系统目标,组件和冷却机制5。冷却系统目标,组件和恒温器法规6。动力传输系统目标和关键组件7。转向系统目标,组件和动力转向系统8。制动系统目标,组件和主缸功能9。悬架系统目标,组件和减震器设计10.这些组件共同调节车辆的气候和整体性能。信息娱乐系统为乘员提供信息和娱乐服务,例如导航,流量更新和多媒体接口。示例包括仪表板显示器和后座信息娱乐系统。轮胎和轮胎可为电气和电子系统提供所有必需的能量•稳健,光线•零件•电池•电池•交流发电机•电压调节器•熔断器/电缆•点火开关•驱动皮带•驱动器系统和电气启用范围和电子启示器(EC)和电子启用(EC),驱动器•驱动器(驱动器)(驱动器)(驱动器)(驱动器)和电子启用(EC),并将电源组合(EC)组合(EC)和电子设备(Ection Verions and Ontors)(驱动器)(驱动器),并将电源组合(EC)和电子设备(EC)组合(EC)组合(EC)和电子设备(Ection Verions and Doction and)(驱动器)(EC)。内部照明系统旨在照亮车辆的内部,以保持居住者的舒适性和安全性。这些系统涉及各种组件,包括接线图和安装过程。配件控制系统管理不同车辆配件的电气操作,例如门,后备箱,窗户,镜子,雨刮器和大灯。这些系统通常具有自动或集成控件,以简化用户交互。V2X通信系统(远程信息处理)使车辆能够与其他汽车,道路基础设施,行人和路边服务共享关键的实时信息,以增强安全,保障,交通流量,舒适和娱乐。该技术包括缓解碰撞和远程诊断等功能。车辆诊断/检查系统通过程序和工具(例如车载和远程诊断,测试设备和定期检查)促进了标准化的车辆诊断和检查。