金属电极诱导的晶格应变会损害用电子或孔自旋运行的高级量子设备的功能。在这里,我们通过nanobeam扫描X射线di效果显微镜很好地研究了由埋入10 nm厚的SI / SI 0.66 GE 0.34量子孔的晶状体上的CMOS制造钛电极引起的变形。我们能够测量2-8×10-4范围内的锡电极诱导的应变张量成分的局部调制,并具有约60 nm的横向分辨率。我们评估这些应变流动在局部调制中反映在SI传导带的最小值大于2 MeV的电势中,该电池的最小值大于2 MeV,该调制带接近静电量子点的轨道能。我们观察到,在量子孔层的给定深度处应变调制的符号取决于电极的横向尺寸。由于我们的工作探讨了设备几何形状对应变诱导的能量景观的影响,因此它可以进一步优化缩放CMOS加工的量子设备的设计。
一维(1D)固体的电导率相对于其长度表现出指数衰减,这是定位现象的众所周知的表现。在这项研究中,我们介绍了将一维半导体插入单模电磁腔所产生的电导率改变,并特别集中在非排定掺杂的状态上。我们的方法采用了绿色的功能技术,适用于对腔体激发状态的非扰动考虑。这包含相干的电子腔效应,例如零点爆发场中的电子运动,以及在隧道过程中的不一致的光子发射过程。跨腔的电子传递的能量谱发育与虚拟光子发射,沿谐振水平的通过以及光子重吸收相关的FANO型共振。FANO共振的质量因素取决于中间状态是否耦合到铅,当该状态深入障碍潜力中时达到最大值。耦合到空腔也提高了浅结合状态的能量,使它们接近传导带的底部。这种作用导致低温下电导率的增强。
摘要。这项研究研究了MGTIO 3钙钛矿材料的电子,光学和结构特性,无论是纯还是掺杂氮(N)和磷(P)等元素。调查利用了WIER2K代码中实现的GGA-MBJ近似值的密度功能理论(DFT)。结果表明,在具有y(n和p)的氧气位置,掺杂mgtio 3的带隙能显着低于纯MGTIO 3的带隙能量,其带隙为2.933 eV。,特别是在n和p的情况下,频带间隙降至1.74和0.65 eV,此外,费米能(EF)水平在P型半导体(SC)中向价带(VB)移动。此外,我们已经分析了这些系统的光学特性,包括它们的介电函数(εଵ和εଶ),光导率(𝜎),吸收系数(α)和折射率(n)。此外,用n和p掺杂会增加可见光光谱中的吸收,这在光照下会提高光催化活性,因为掺杂的材料的价和传导带更容易地产生氢。上面的发现表明,这些材料具有广泛的应用,包括光电设备的创建。
半导体这些材料位于良好导体和良好绝缘体的极端之间。它们是纯净的结晶材料,是纯净的,但在添加杂质和/或响应光,热,电压等时会进行。示例:诸如硅(Si),锗(GE),硒(SE)之类的元素;诸如砷耐加仑(GAAS)和抗抗氧化酰胺(INSB)的化合物结构分离的原子中的电子占据了离散的能级。当原子彼此接近时,这些电子可以使用其邻居的能量水平。当原子定期排列在所谓的固体晶格中时,能量水平会在频带中分组在一起。这是允许能量的连续范围,而不是单个级别。在所谓的带隙中也将有一组能量。类似于单个原子的能级,电子将首先填充较低的波段。费米级别对哪些水平电子通常会填充有一个粗略的了解,但是总会有一些具有单个能量的电子。在导体中,最高的占用带(称为传导带)并不完全满。这使电子可以从相邻原子进出,因此很容易进行。
MOF由于其可调带间隙而成为光催化的有前途的材料,这使它们能够吸收光并产生用于光催化反应所需的电子孔对。带隙,价带(VB)和传导带(CB)之间的能量差,确定了MOF可以吸收的光的波长。通过仔细设计MOF中的有机配体和金属节点,研究人员可以调整带隙以匹配可见光或紫外线的能量。这种可调节性允许MOF有效利用轻能,从而促进反应性物种的产生,例如羟基自由基和超氧化物离子,这对于降解污染物至关重要。在用于光催化应用的各种类型的MOF中,有几种值得注意的MOF,具有适当的带隙用于光催化目的(图1)。首先,UIO型MOF的特征在于它们的稳健性和较大的孔径,在光催化反应中表现出了出色的性能,这是由于它们的高表面积和恶劣条件下的稳定性。mil-type MoF,具有开放金属位点和量身定制的孔结构,也具有增强的光吸收和电荷分离特性,使它们成为各种转化的有效光催化剂。
摘要:EUCD 2 AS 2作为少数磁性Weyl半候选材料之一引起了人们的极大兴趣,尽管最近,有新兴的报道声称其具有半导体的电子结构。为了解决这一辩论,我们确定了N型EUCD 2作为2晶体的生长,使用角度分辨光发射光谱(ARPES)直接可视化导带的性质。我们表明,在热电和霍尔效应测量中,LA掺杂导致N型传输特征,在N型掺杂水平为2-6×10 17 cm-3的晶体中。p-和n型掺杂样品在9 K处表现出抗磁磁性序列。在6 K处进行的ARPES实验清楚地表明,在价值频带最大值高于价值的0.8 eV处的传导带的最小值,这进一步证实了通过观察0.71-0.72 −0.72 – 0.72 – 0.72 ev band base base defuse fiffuse Reflebance Reflebanse vanse vanse vance vance vance bap sagob。在一起,这些发现明确地表明EUCD 2 AS 2确实是一个具有巨大带隙的半导体,而不是拓扑半学。■简介
磷烯是黑磷的单层,是一种二维材料,在布里渊区缺乏多杂志结构,并且具有可忽略的旋转轨道耦合。这使其成为独立于山谷或旋转大厅效应的轨道厅效应的有前途的候选人。为模型磷烯,我们利用了一种密度功能理论的紧密结合哈密顿量,该密集结合哈密顿量是通过假性轨道轨道投射方法构建的。为此,我们使用新实施的内部基础的Paoflow代码,该代码提供了对磷烯传导带的相当好的描述。通过采用线性响应理论,我们表明磷烯在轨道霍尔电导率中表现出相当的轨道霍尔效应,对轨道霍尔电导率有强各向异性,用于平面外轨道角度动量成分。电导率的大小和符号取决于施加的电场的平面内方向。这些独特的特征使能够明确地观察该材料中的轨道大厅效应。还探索了应变和垂直施加的电场对磷酸轨道霍尔响应的影响。我们表明,在其导电状态下,垂直于磷酸层的补充电场可产生诱导的平面内轨道磁化强度。
本文报告了基于β-GA 2 O 3纳米膜(NM)的柔性光电探测器(PDS)及其光电特性在弯曲条件下的证明。柔性β-GA 2 O 3 nm PDS在弯曲条件下表现出可靠的太阳灯光检测。有趣的是,在弯曲条件下观察到了最大太阳盲图的波长略有变化。为了研究这种峰值变化的原因,测量了不同应变条件下β-GA 2 O 3 nms的光学特性,并揭示了由于β-GA 2 O 3 Nms中纳米级裂纹而导致的折射指数,灭绝系数和应变的β-GA 2 O 3 Nms的带隙。多物理学模拟和严密功能理论的计算结果的β-GA 2 O 3 nms表明,传导带的最小值和价带的最大状态几乎与施加的单轴菌株线性移动,从而导致β-GA 2 O 3 Nm的光学性质变化。我们还发现,β-GA 2 O 3 nm中的纳米间隙在弯曲条件下在弯曲条件下增强β-GA 2 O 3 nm PD的光自抑制至关重要,这是由于二次光吸收的光吸收了纳米间隙表面的光。因此,这项研究提供了一条可行的途径,以实现高性能灵活的光电探测器,这是将来的灵活传感器系统中必不可少的组件之一。
摘要:基于应变的带结构工程是一种强大的工具,可以调整半导体纳米结构的光学和电子特性。我们表明,我们可以调整INGAAS半导体量子井的带结构,并通过将其整合到卷起的异质结构中并改变其几何形成,从而改变发光的光线。来自光致发光和光致发光激发光谱的实验结果表明,由于重孔在卷起的Ingaas量子井中的轻孔状态与轻孔的反转,价带状态的强型能量转移与结构相比具有强大的能量转移。带状态的反转和混合会导致滚动量子井的光学选择规则发生强烈的变化,这些量子井也显示出传导带中消失的自旋极化,即使在近乎谐振的激发条件下也是如此。的频带结构计算以了解电子过渡的变化,并预测给定几何构造的发射和吸收光谱。实验与理论之间的比较表明了一个极好的一致性。这些观察到的基本属性的深刻变化可以作为开发量子信息技术新颖的光学设备的战略途径。关键字:频带结构反演,半导体量子井,光学选择规则,滚动微管,拉伸和压缩混合状态,弯曲的半导体膜■简介
摘要:硝酸盐(GAN)中的缺陷单光子发射器(SPE)近年来由于其提供的优势而引起了人们的关注,包括在室温下操作,狭窄的排放线宽和高亮度。尽管如此,由于可能在GAN中形成的许多潜在缺陷,单光子发射机制的确切性质仍然不确定。在这项工作中,我们对从头算计算进行的系统研究表明,碳和硅作为氮化碳中的常见掺杂剂可以与GAN中的固有缺陷相互作用,并形成新的高速缺陷单光子来源。我们的发现确定了三元缺陷n ga v n c n,其寿命短于1 ns,而小零光子线(ZPL)为864 nm。换句话说,此缺陷可以用作短波长窗口中的高速单光子源进行纤维通信。在尖锐的对比度中,Si支持的缺陷N GA V n Si N具有较高的无占缺陷能水平,该缺陷能水平进入传导带,因此不适合单个光子发射。已经对潜在的缺陷,热稳定性和单光子发射特性进行了系统的研究。分别采用了perdew-burke-ernzerhof交换相关功能和HEYD-SCUSERIA-ERNZERHOF交换相关功能的放松计算和自洽计算。这些发现表明了通过碳或硅掺杂剂的高性能单光子来源的潜力。