暴露于超短脉冲激光器(UPL)的聚合物(UPL)经历了一系列物理和化学变化,这些变化在从材料加工到高级光子学和生物医学的应用中起着关键作用。为了阐明UPL与聚合物材料的相互作用,假设聚碳酸酯(PC)是暴露于中等能量的激光脉冲的测试材料,则研究了超快现象,例如载体动力学,重组和松弛。为介电材料开发的理论模型被扩展,以描述PC的未开发的激发和载体动力学,而femtsecond瞬时吸收光谱用于阐明材料的响应和超快动力学的演变。使用理论模型来解释实验测量结果表明,能量水平的存在促进了自我捕获的激子在传导和价带之间的自我转移的形成(低于传导带的2.4-2.8 eV)。它还可以预测电子播寿命(约110-150 fs),重组时间(约34 ps)和由于kerr效应而折射率的非线性部分(𝑛2值范围为1.1-1.5×10 -16 cm 2 /w)。此外,还强调了多光子辅助电离的主要特征,而还计算出光学崩溃阈值并发现等于2.55×10 12 W/cm 2。结果预计将支持旨在阐明强烈超短激光脉冲与聚合物材料相互作用的未来努力,这对于优化这些材料的制造过程至关重要。
摘要:可以通过扭曲角度精确控制的空间变化带对齐和电子和孔定位的Moiré杂波,已经成为研究复杂量子现象的令人兴奋的平台。虽然大多数过渡金属二甲化元素(TMD)的异质分子具有II型带对齐,但引入I型带比对可以实现更强的轻度耦合和增强的辐射发射。在这里,我们通过第一原则GW和贝尔特萨蛋白方程(GW-BSE)的计算以及时间和角度解决的光发射光谱(TR-ARPES)测量的结合,与先前的理解相反,与先前的理解相反,MOSE 2 /WS 2杂波在大型型号和类型IS型构建型和同样的区域均与II的类型II型构建型和相似的区域相反。在不同的高对称区域中以小扭曲角度重建。在Tr-arpes中与我们的计算一致,仅在摩西2中观察到长寿命的电子种群,对于具有较大扭曲角的样品,而在具有小扭曲角的样品中,观察到来自两个不同长寿命的激子的信号。此外,尽管这两层的传导带几乎是堕落的,但仍未发生激发杂交,这表明先前观察到的这种材料中的吸收峰来自晶格的重建。我们的发现阐明了Mose 2 /ws 2异质结构中的复杂能量景观,其中I型和II型带对齐的共存为Moiré-Tonable可调光电设备打开了带有内在的侧面异质结的门。
要计算WSE 2层的Moir´e电子结构,我们需要求解未介绍的TMD的K和-K谷(τ= 1和-1)周围的有效连续模型,然后将它们折叠到Moir'e Bz中s3(a),其中蓝色区域代表具有τ= 1的连续模型,红色区域代表带有τ= - 1的连续模型。这两个区域在动量空间中远距离分离,因此两个连续模型在单粒子水平上被解耦]。我们将Bz中的山谷表示为±K,而Moir´e Bz中的山谷为κ和κ'。为简单起见,我们还使用±k表示某处τ=±1的连续模型。为了获得Moir´e潜在参数(v I,φi),(i = V,c),我们使用自旋轨道耦合(SOC)来利用密度功能理论(DFT)软件VASP [6-8]来计算WSE 2 / WSE 2 / WS 2 HETEROBILAYER系统。Moir´e的电势作用在相应的价和配置带的D轨道上,可以解释为Valence带最大值(VBM)的变化,而传导带最小值(CBM)是Moir´e超级突出的位置R的函数。如上所述,可以将这些变化映射到VBM和CBM的变化,并在AA堆叠的WSE 2 / WS 2 BILAYER中具有不同的层间层中位移D,其扭曲角度为零。在此,我们计算了三个高对称堆叠配置的带状结构[5]。基于金属原子和相反层的金属原子和chalcogen原子的比对,将三种构造称为SE / W,AA和W / S。例如,SE / W表示顶层中的SE原子与底层中的W原子对齐。真空距离在平板模型中设置为20°A,并且在不同结构构造中的层间距离是通过
摘要。基于密度功能理论(DFT)的第一原理计算已用于研究α-GAN晶体的结构,电子,光学和热力学方面。基于局部密度近似(LDA),广义梯度近似(GGA)和荟萃分析梯度近似(M-GGA)功能方法,已经估计α-GAN晶体的带隙能量为1.962 eV,2.069 ev和2.354 ev。这些研究中介绍的带隙能量与其他实验和理论研究的能量一致。此外,我们的发现使我们了解了α-GAN晶体的电子和光学特性。α-GAN晶体中的带隙能是定义其电气和光学特征的关键因素。它们是可以将电子从价带向传导带退出的能量范围,从而影响材料的电导率以及材料吸收并发出光的能力。我们在先前的研究中的结果大致表明了我们发现的可靠性,因此增加了我们对α-GAN的电子和光学现象的了解。通过模拟状态密度和α-GAN的状态部分密度,发现了GA和N原子的轨道特性。除了分析带结构,状态的密度和我们还包括化合物的光学特性外。结果表明α-GAN具有直接的带隙,该带隙位于布里群区的G点。这是其开发光电设备的巨大潜力的原因。此外,我们使用前面给出的三个近似值来找到该化合物的光学特性(吸收系数)。除此之外,可以像Debye温度,焓,自由能,熵和热容量一样计算的热力学特性使我们能够更好地了解化合物的热行为。检测到α -GAN的热容量为17.3 Jmole -1 K -1,Debye温度为824.6K。这项研究将对α-G-N提供详细的解释,涵盖其所有基本特性以及光电和电子设备中可能的应用。这项研究的结果非常重要,基于α-GAN研究将开发的新技术将非常有益。
在染料敏化的太阳能电池(DSSC)中,光被敏化的染料吸收。当光撞击染料分子时,它会吸收光子并将其兴奋至更高的能量状态。这种激发态允许染料分子将电子注入半导体的传导带,从而产生电流。选择染料特性非常重要,因为它可以帮助提高DSSC的性能。然而,从相同批次用作染料的植物或水果的相同输出电流特性非常困难。此外,改善了制造染料敏化的太阳能电池的电性能,例如短路电流密度和效率,这是至关重要的,因为需要考虑许多实验因素。因此,要最大程度地减少材料资源的额外利用,这是由于制造不成功的风险并理想地获得更好的性能,进行基于模拟的研究对于优化DSSC的性能很重要。自由软件通用光伏设备模型(GPVDM)是一个有前途且有趣的工具,因为它的免费许可和通过图形接口易于访问,用于模拟光电设备,包括OLED,OFET和各种类型的太阳能电池。本文考虑了3-D光伏设备模型GPVDM,以模拟用不同的叶绿素染料样品以DSSC性能模拟所提出的结构。本文旨在表征基于叶绿素的DSSC的高电流密度 - 电压(J-V),并确定合适的光伏仿真软件,用于运行基于叶绿素的DSSC的模拟。最后,将结果与各种文献来源中报道的实验数据进行了比较。结果表明,对于虫丝豆糖叶(CHL E),增强的短路电流密度(JSC)为0.3556 mA cm -2,这是所测试的其他染料中最高的。模拟短路电流密度(JSC)的值与已发表论文中报道的JSC的实验结果略有不同。总而言之,GPVDM可被认为适用于建模DSSC。
我们已经研究了通过重复热预处理和负电子亲和力(NEA)激活周期制备的GAAS表面的光发射特性。表明,光发射效率随预处理序列发生了巨大变化。我们已经用两个具有不同量子效率的GAAS样品讨论了光发射特性,并发现量子效率随预处理序列的变化与量子效率的绝对值无关。此结果表明电子的发电和传递和发射是独立的过程。我们还讨论了新型的NEA激活方法,该方法有望改善光发射特性。I.引言碱金属在半导体表面上的吸附是从科学和实践的角度来看的重要系统,并且多年来已经对许多人进行了研究。例如,当电子亲和力的GaAS半导体大约为4 eV,因为大量条件会通过CS的交替供应和O 2(或NF 3)的交替激活,其表面的真空水平位于大量导带以下,并且该条件定义为负电子亲和力(NEA)。当光子能量在GAAS带隙能(E G = 1.4 eV)附近的激发灯照亮表面时,Valence Electron会激发到最小的传导带,并可以轻松逃脱到真空中。NEA-GAA具有很大的优势,例如自旋极化,低发射率,短束和高量子效率(QE)电子束,并且NEA-GAAS表面已被用作1970年代1的加速器的光(1)。碱金属在GAAS表面上的吸附已被广泛应用于各种场,但尚未详细阐明其吸附结构和光发射机制。将光发射过程的定性或现象学解释提出为Spicer的三个步骤模型2),并且吸附结构由多种模型(例如Hetero Junction,cluster或偶极模型3,4)预测。很难用碱金属和氧原子的几个单层观察到实际的NEA结构,因为在真空中,热环境和残留气体很容易降解NEA-GAAS表面。这些结构变化降低了NEA-GAAS光电的性能。最后,我们将简要提出新型的NEA激活方法。有可能改善光发性属性。
半导体过渡金属二盐元素(TMDS)MX 2(M = MO,W; X = S,SE)的家族作为未来技术应用的最有希望的平台之一[1-4]。这些材料的确是存在许多自由度的特征(电荷,旋转,山谷,层,晶格,。。。),互相纠缠[5-11],开放了通过外部磁或电场以受控,灵活和可逆的方式调整电子/光学/磁/传输特性的可能性。在单层级别隔离时,这些化合物在布里渊区的高对称点K,k'的山谷中呈现直接带隙,如光致发光探针所示[5,7,12-12-15]。与石墨烯中一样,蜂窝状晶格结构反映在特殊的光学选择规则中,该规则在圆形偏振光下诱导给定山谷中有选择性的频带间光学转变。这种情况提示了“ Valleytronics”的概念,即在单个山谷中选择性地操纵自由度的可能性[13,14]。在单层化合物中广泛探索了TMD中的这种光敏性[2,4,8,16 - 30]。一种常见的工具是观察光学二色性,即左手或右圆极化光子上的不同光学响应。这些化合物相对于石墨烯的一个显着差异是存在强的自旋轨道耦合,该耦合提供了价带的相当大的自旋分解。在这种情况下,循环极化的光不仅与给定山谷有选择地结合,而且还与给定的自旋连接,在传导带中产生自旋偏振电荷,以及价带中的相反旋转电荷[4、8、8、16-23、26、26、26、27、29、29、31-36]。可以通过观察有限的Kerr或Faraday旋转来方便地研究光线和自旋种群之间的纠缠[37-39]。这些效应表明样品中存在固有磁场的存在,在单层TMD中,它们可以自然触发,这是由于圆形极化泵的结果[40],
为了抑制光生的电子和单个光催化剂中孔的重组,一种重要的方法是通过结合两个光催化剂来设计异构。此方法已广泛用于增强复合材料的光催化性能。在开始时,大多数人都使用II型电荷载体传递机制来解释复合半导体的出色活性。虽然II型杂插机制可以说明空间中光所产生的电子和孔的分离,但它面临着巨大的问题和挑战。首先,复合光催化剂的还原能力随着光基电子从高传导带(CB)转移到低CB的转移而降低。同样,复合光催化剂的氧化能力随着孔从较低的价带(VB)转移到较高的Vb而降低。因此,从热力学的角度来看,由于系统的氧化还原能力降低,该电荷载体转移对光催化的降低有害。其次,从动态的角度来看,由于其强的电子电子库仑排斥力,因此不可能将电子从一个光催化剂转移到另一个光催化剂。同样,孔也不可能从低Vb转移到高VB。因此,近年来越来越多的研究表明,II型异质结载体转移机械机械不正确。在2019年,为了解决II型异质结构机制中电荷载体转移机制的问题,首先提出了一种新的步骤方案(S-SCHEME)杂结概念。S-Scheme杂结包含两个不同的半导体光催化剂,即还原光催化剂(RP)和氧化光催化剂(OP)。RP的CB,VB和费米水平高于OP。在RP和OP接触之后,由于RP和OP具有不同的费米水平,RP中的电子将转移到OP,直到其界面处的费米级别相等。该电子转移分别以正电荷和负电荷导致RP和OP。最后,在界面上构建了内置电场,其方向是从RP到OP。在光照射下,电子从两个光催化剂的VB都激发到其CBS。然后,内置的电场驱动了光生电子从OP转移到RP。因此,光生的电子和孔在空间上
复杂。首先有面板,可以收集阳光并将其转化为电。直流信号被馈入逆变器,该逆变器将直流转换为网格兼容的交流电源(这是您在家中使用的)。出于安全原因,包括各种开关框,整个过程通过电线和导管连接。存储电池可以通过在太阳能电池板中存储更多或一部分电源,在自由阳光期间提供保护能力。太阳能发电系统用于私人电力消耗,气象站,广播或电视台,娱乐场所,例如电影院,酒店,餐馆,村庄,村庄和岛屿。传统的P-N结太阳能电池是最先进的太阳能收集技术。能量输入和载体输出的基本物理学功能功能和相关的电性能(即带距离)。电子需要具有大于带隙的能量,以激发从价带到传导带的电子。理想的太阳能电池的直接带隙为1.4 eV,以吸收来自太阳辐射的最大光子数量。看似无限的晶格创建了允许能量状态的乐队;硅创建一个不存在电子的带隙(一个1.1 eV宽的带隙。然而,太阳的半径接近约6000 K的黑色光谱。因此,从太阳到达地球的大多数光线都具有大于太阳硅群的半径。这些高能声子将被太阳能电池固化。仍然,声子和硅带之间的距离将转换为热量(通过称为声子的溢出)而不是可用的能量。对于单个会议单元,这将设定最大效率约为20%。当前执行多节点光伏设计以克服效率限制的方法似乎并不是昂贵的解决方案。即使是内置的PV设备也只能在白天使用,并且需要直接的阳光(直接连接到内部)才能达到最佳性能。风力涡轮机系统的主要组件如图1.9所示(绘制不缩放)。涡轮机是由叶片,转子轮毂和连接组件形成的。驱动列车是由涡轮旋转质量形成的,低速
提供了光学脉冲电场的时间演变。这一基础概念的基础概念是在不同媒体中对电子过程的广泛和精确研究为广泛而精确的研究铺平了道路。它提供了固体中相干能量转移动力学的子周期分辨率,[6,7]光定位效应的精确时间分解测量,[8-10]以及对超快多体动力学的实时研究。[11–16]另一方面,量身定制的事件电场可用于以类似晶体管的方式来控制光电子中的库层流,从而导致PHZ Optical Gates。[17,18]这个概念自然遵循了介电上光学诱导电流的显着进展,该电流为超快光电开关提供了基础。[19-21]在两种情况下,速度和灵敏度都是超快速光电设备的两个关键参数。设备的频率带宽越大,光象征信息交换越快;灵敏度越高,所需的光强度就越低。操作速度通常受介质的响应时间的限制,而灵敏度则受到光 - 互动横截面的限制。因此,最大程度地提高了光结合信息交换,取决于这两个参数及其优化。这种限制导致了高电子摩托车晶体管的发展,这表现优于基于硅的同行,达到了1.5 THz的显着切换频率。[18,24]各种物理约束限制了传统电子开关的性能和效率,其中一个示例是电子迁移率,通常会随着材料带隙的函数而降低,[22]将开关功能的较低阈值效果,因为材料具有较大的带镜头的材料,可以实现较大的带镜头,从而实现了较大的带材料的潜力。这种突破性的发展为实现第一个固态放大器的操作铺平了道路。[23]在实心光电设备的情况下,存在对脉冲能,带宽和带宽的模拟限制。依靠强场,几乎没有周期的激光脉冲增加了电荷转移到更高传导带的机会,从而限制了光电子控制的限制。[18]这些结合驱动了需要低脉冲能量的新技术的开发,例如利用纳米结构中增强范围的框架[3]或类似于奥斯顿开关的设备。