摘要:如今,为了克服可再生能源整合带来的新挑战,成本更低、体积更小、效率更高的电源转换器正在不断发展。在此背景下,可再生能源应用中对精心设计的电源转换器的需求日益增加,以减少能源利用率并处理各种负载。本文提出了一种用于 DC-DC 转换的中心抽头桥级联串联谐振 LC 双有源桥 (DAB) 转换器。所提出的转换器的零件数量少,可以实现高功率密度设计,同时降低成本。由于采用电流阻断特性消除了反向电流,因此所提出的转换器降低了传导损耗。反向电流阻断还可以在很宽的工作范围内实现零电压开关 (ZVS) 和零电流开关 (ZCS)。因此,与传统的 DAB 转换器相比,使用简单的固定频率调制 (FFM) 方案可提供更宽的工作范围。基于传导损耗和开关损耗对所提出的转换器和传统的 DAB 转换器进行了全面比较,以说明性能改进。最后,通过仿真和实验结果验证了所提出的转换器的有效性。
摘要:如今,为了克服可再生能源整合带来的新挑战,成本更低、体积更小、效率更高的电源转换器正在不断发展。在此背景下,可再生能源应用中对精心设计的电源转换器的需求日益增加,以减少能源利用率并处理各种负载。本文提出了一种用于 DC-DC 转换的中心抽头桥级联串联谐振 LC 双有源桥 (DAB) 转换器。所提出的转换器的零件数量少,可以实现高功率密度设计,同时降低成本。由于采用电流阻断特性消除了反向电流,因此所提出的转换器降低了传导损耗。反向电流阻断还可以在很宽的工作范围内实现零电压开关 (ZVS) 和零电流开关 (ZCS)。因此,与传统的 DAB 转换器相比,使用简单的固定频率调制 (FFM) 方案可提供更宽的工作范围。基于传导损耗和开关损耗对所提出的转换器和传统的 DAB 转换器进行了全面比较,以说明性能改进。最后,通过仿真和实验结果验证了所提出的转换器的有效性。
Microchip 的 IGBT 产品为各种高压和高功率应用提供高质量解决方案。开关频率范围从传导损耗最小的 DC 到极高功率密度开关模式电源 (SMPS) 应用的 150 kHz。下图显示了每种产品类型的频率范围。每种 IGBT 产品都代表了最新的 IGBT 技术,为目标应用提供了最佳的性能/成本组合。共有六个产品系列,采用三种不同的 IGBT 技术:非穿通 (NPT)、穿通 (PT) 和场截止。
本文介绍了一种用于串联超级电容器串和电池串的新型单串联谐振槽和电容器转换器电压平衡电路。它识别了在串联超级电容器系统或电池系统中恢复最大能量和电池间零电压差的平衡电路。该平衡电路不仅继承了基于传统单串联谐振转换器的平衡系统的改进,而且还恢复了开关损耗、传导损耗和电池串间电压差的缺点。所有 MOSFET 开关均由一对互补 PWM 信号控制。此外,谐振槽和并联电容器在充电和放电两种模式之间工作。该电压平衡电路已显示出在电池管理系统中应用的良好效果。
电容耦合 电容耦合 电容电压平衡 电容器 碳中和 级联 H 桥 共源共栅 CC-CV 充电 混沌抑制 EMI 充电补偿装置 充电调度 充电站 充电 电动汽车充电基础设施 电路 D 类放大器 闭式方程 组合 MMC-LLC 热电联产 公共接地 共模电流 电力电子通信 通勤 补偿 测量组件 压缩机 计算成本 状态监测 传导损耗 共识 基于共识的合作控制 接触电阻 非接触式能量传输 非接触式电源 控制相互作用 电气系统的控制方法 驱动控制 控制策略 控制器基准 控制器 转换比 转换器电路 转换器控制 转换器机器相互作用
在半桥应用中对交叉传导的灵敏度增加 这两种影响都可以通过使用负栅极驱动电压来减轻。但这种方法也有缺点,因为负栅极驱动会导致反向(第三象限)操作中的电压降增加,从而导致死区期间的传导损耗更高。因此,最佳栅极驱动始终取决于基本应用条件(硬/软开关、功率等级、开关电压、频率等)。本白皮书简要概述了 GIT 和 SGT 产品系列的推荐栅极驱动概念。多功能标准驱动器(RC 接口)可以轻松适应这两种技术。本文档还提供了基本的栅极驱动器尺寸指南和一些典型的应用示例。
谐振转换器是电动汽车车载充电器和储能应用的理想选择。它能够有效控制能源、电池或高功率负载之间的功率流动。简单的 LLC 转换器可以扩展为双向 CLLLC 转换器,从而实现智能功率控制并提高器件效率 [1]。为了减少开关损耗并减小尺寸,必须使用高频开关器件,例如 GaN 晶体管。与硅或碳化硅等效晶体管相比,GaN 晶体管的 R DS(ON) 参数较低,因此传导损耗较小 [2]。零反向恢复、快速开关速度和较低的死区时间使 GaN 晶体管成为转换设计的理想选择 [3]。此类转换器的设计在 [4、5] 中进行了描述。除了由晶体管制成的 H 桥开关外,变压器对功能和功率效率也具有至关重要的影响。设计中必须考虑变压器的实际参数 - 即自谐振频率,因为它会影响转换器的最大工作频率 [6]。本文介绍了
摘要:本文介绍了一种用于光伏系统的三相交错升压转换器的突破性设计,利用并联的传统升压转换器来降低输入电流和输出电压纹波,同时提高动态性能。这项研究的一个显着特点是将锂离子电池直接连接到直流链路,从而无需额外的充电电路,这与传统方法不同。此外,MPPT 控制器和闭环模糊控制器与电流控制模式的组合可确保为所有三个相位生成准确的开关信号。精心调整的系统在输出电压中表现出非常低的纹波含量,超过了计算值,并表现出卓越的动态性能。研究延伸到对损耗的全面分析,包括电感器铜损和半导体传导损耗。在所有情况下,转换器的效率都超过 93%,凸显了其作为光伏系统有效解决方案的强大性能。