1 加州理工学院物理、数学和天文学系,1200 E. California Blvd.,帕萨迪纳,CA 91125,美国 2 加州理工学院量子技术联盟 ( AQT ),1200 E. California Blvd.,帕萨迪纳,CA 91125,美国 3 哈佛大学约翰·A·保尔森工程与应用科学学院,29 Oxford St.,剑桥,MA 02138,美国 4 卡尔加里大学量子科学与技术研究所和物理与天文系,2500 University Dr. NW,卡尔加里,AB T2N 1N4,加拿大 5 奥地利科学技术研究所,A-3400 Klosterneuburg,奥地利 6 威斯康星大学麦迪逊分校物理系,1150 University Avenue,麦迪逊,WI 53706,美国7 任何通讯作者。
碳纤维(CF)增强聚合物复合材料已用于航空航天结构,因为与铝合金相比,它们具有低质量,高特异性,高特异性刚度和低生命周期维护。但是,由于其相对较低的导热率,原始的CF聚合物复合材料无法为某些应用(例如热交换系统和散热器)提供有效的热流。本文所描述的技术提供了新型的CF聚合物复合材料,通过掺入热解石墨板(PGS),具有很高的导热率。新型混合PGS/CF聚合物复合材料的热导率的测量比原始CF聚合物复合材料高约13至36倍,并且是铝合金6061的两倍。这种具有足够热导率的新材料适用于热交换系统的复合辐射器。
与焊接或锡焊相比,导热胶可以粘合铜和铝等难以粘合的材料组合。这些胶粘剂可填充缝隙,大面积导热,并且耐水、耐油或耐气。由于胶粘剂在室温或中等温度下固化,因此粘合过程中不会产生机械应力、不必要的变形或变色。
要全面了解细胞信号传导过程,需要了解蛋白质结构/功能关系、蛋白质-蛋白质相互作用以及控制表型的途径的能力。计算模型提供了一个有价值的框架,用于整合这些知识以预测系统扰动和干预对健康和疾病的影响。虽然机械模型非常适合理解信号转导的生物物理基础和治疗设计原理,但数据驱动模型特别适合提炼样本之间以及多变量信号变化和表型之间的复杂信号关系。这两种方法都有局限性,并且无法提供信号生物学的不完整表示,但它们的精心实施和整合可以为操纵系统变量如何影响细胞决策提供新的理解。
精准医疗依赖于对疾病发病机制的详细分子理解。在此,我们基于对导致这种致命癌症的可用药物途径改变的新见解,考虑了恶性外周神经鞘瘤 (MPNST) 急需的治疗方案。最近的观察表明,致癌 GTPase RABL6A 通过过度激活细胞周期蛋白依赖性激酶 (CDK) 和失活视网膜母细胞瘤 (RB1) 肿瘤抑制因子,在促进 MPNST 进展方面发挥着重要作用。在 MPNST 的临床前研究和其他肿瘤的临床研究中,CDK4/6 抑制剂单一疗法显示出有限的疗效和持久性。因此,我们讨论了在适用于 MPNST 和其他 Ras 驱动的恶性肿瘤的靶向联合疗法中抑制多种 RABL6A 效应物(特别是 CDK4/6 和 MEK 激酶)的原理和临床益处。
哺乳动物/mTOR是丝氨酸 - 硫代激酶。它控制了哺乳动物细胞的许多重要功能,例如细胞存活和蛋白质合成[4]。在2000年代初期,神经科学家开始对MTOR目标的兴趣。4E结合蛋白和P70核糖体S6蛋白激酶1最初研究[5]。在确定MTOR在神经元形态发生,生存和分化中的作用后不久,靶标开始流行,许多科学家在PD和Alzheimer病(AD)等不同疾病中观察到了其在不同疾病中的作用。与MTOR相关的生理状况和神经病理列表迅速增加,但是对MTOR调节及其神经元中其细胞效应子的透彻了解仍然难以捉摸。自噬,翻译,细胞信号传导,转录和细胞骨架动力学都受MTOR活性变化的影响[6]。根据新的研究,MTOR的过表达与PD的发病机理有关[7,8]。结果,mTOR可能是PD的可能治疗靶标之一[9]。MTOR活动很有争议。它具有
由于电子从大分子链上的π分子轨道离域,了解有机大分子的电子结构和立体化学之间的密切联系,从而获得半导体或金属导电性,这有利于解释和理解它们的电学、电化学和光学性质以及不同的导电模式,也将更好地解释这些性质,特别是在通过化学聚合或电沉积开发超薄导电或半导体层时;这些结构用于开发电流或阻抗生物传感器(生物电子学)中DNA、RNA或蛋白质的固定表面,以及OJI(“有机”结型晶体管)、Oled(有机发光二极管)、用于纳米电化学、半导体电化学和光电化学的纳米电极,以及它们在数字显示、防腐、量子点(纳米点)和有机光伏电池(OPVC)中的众多应用。
图 3:Mb 中能量转导的分子途径。(a)Mb 的结构,不同坐标根据其 PEF 的大小以不同颜色表示。(b)His93 作为血红素和蛋白质骨架之间的连接器(蓝色原子)。标记了对引导血红素能量至关重要的五个内部坐标。(c)仔细观察血红素面向 Mb 内部和外部的部分的 PEF 差异。(d)通过 !! , ! "(蓝色)和 # ! , # " , # #(红色)的 PEF。
有20个膜结合受体酪氨酸激酶(RTK)的亚家族,包括58个成员(1)。这些RTK是信号转导途径的重要调节因子,将细胞内和细胞外提示整合以控制细胞生长,分化,增殖,生存和代谢。RTK中的遗传和表观遗传学改变会导致激酶活性消失,从而导致多个下游信号传导途径发生变化(2)。 RTK介导的信号传导途径的改变是肿瘤发生和抗癌治疗失败的主要机制之一,靶向RTK信号是开发目标癌症治疗作为单一疗法或与其他治疗方式结合的主要策略(2,3)。 AKT(也称为蛋白激酶B) - 雷帕霉素(MTOR)的机理靶标是RTK信号传导最重要的下游效应器之一(4,5)。 对Akt-MTOR的放松管制可能是由许多因素引起的,包括但不限于RTK的突变和/或扩增,RTK配体的过表达,磷脂酰辛醇3-激酶(PI3K)亚基的突变和/或RAS和磷酸化酶和磷酸化酶的突变(PTEN)(PTEN)(PTEN)(PTEN)(PTEN)(PTEN)。 Akt-MTOR信号在大多数癌症中失调,被认为是一个重要而有吸引力的癌症治疗靶标。 在过去的几十年中,已经做出了广泛的努力,以开发针对Akt-MTOR信号传导的抑制剂,尤其是mTOR激酶抑制剂。 然而,尽管在临床前研究中非常有前途,但大多数临床试验的结果令人失望,这些抑制剂作为单药治疗的影响很差(8,9)。RTK中的遗传和表观遗传学改变会导致激酶活性消失,从而导致多个下游信号传导途径发生变化(2)。RTK介导的信号传导途径的改变是肿瘤发生和抗癌治疗失败的主要机制之一,靶向RTK信号是开发目标癌症治疗作为单一疗法或与其他治疗方式结合的主要策略(2,3)。AKT(也称为蛋白激酶B) - 雷帕霉素(MTOR)的机理靶标是RTK信号传导最重要的下游效应器之一(4,5)。对Akt-MTOR的放松管制可能是由许多因素引起的,包括但不限于RTK的突变和/或扩增,RTK配体的过表达,磷脂酰辛醇3-激酶(PI3K)亚基的突变和/或RAS和磷酸化酶和磷酸化酶的突变(PTEN)(PTEN)(PTEN)(PTEN)(PTEN)(PTEN)。Akt-MTOR信号在大多数癌症中失调,被认为是一个重要而有吸引力的癌症治疗靶标。在过去的几十年中,已经做出了广泛的努力,以开发针对Akt-MTOR信号传导的抑制剂,尤其是mTOR激酶抑制剂。然而,尽管在临床前研究中非常有前途,但大多数临床试验的结果令人失望,这些抑制剂作为单药治疗的影响很差(8,9)。要了解大多数癌症在临床条件下对Akt-MTOR靶向癌症治疗不敏感或不响应的潜在机制,迫切需要深入探索Akt-MTOR信号在自主癌细胞调节中的作用以及肿瘤环境。关于Akt-MTOR信号传导在调节癌症免疫(10-13)和DNA损伤反应(14-17)中的基本作用的最新发现(14-17)可能会揭示临床前研究和临床研究之间结果的明显差异。这些最近的发现还为我们提供了新的机会,可以合理地将Akt-MTOR抑制剂与其他癌症治疗方式,尤其是基于免疫检查点阻滞的免疫疗法相结合。本评论将重点讨论AKT-MTOR信号调节编程死亡配体(PD-L1)和DNA损伤响应
在金属氧化物中新发现的光离子效应为功能性陶瓷应用提供了独特的机会。作者概括了最近在紫外线(UV)辐射下观察到的晶界光离子效应在辐射离子效应下,可用于散装材料并用于伽马射线(𝜸砂)检测。在室温附近,掺杂的GD掺杂CEO 2,一种多晶离子导电陶瓷,在暴露于60 Co 𝜸 -ray(1.1和1.3 MEV)时,电阻比变化≈103,离子电流的可逆响应在离子电流中可逆。这归因于在晶界处的稳态空间电荷屏障的稳态钝化,该空间电荷屏障充当虚拟电极,捕获了辐射诱导的电子,进而降低了空间电荷屏障高度,从而独家调节了陶瓷电解质中的离子载体流量。这种行为允许在低场(即<2 v cm-1)下进行显着的电响应,为廉价,敏感,低功率和可微调的固态设备铺平了道路,非常适合在刺激性(高温,压力和腐蚀性)环境中运行。此发现为便携式和/或可扩展的辐射探测器提供了机会,从而使地热钻探,小型模块化反应堆,核安全和废物管理有益。