骨骼肌是一种高度的塑料组织,可以改变其代谢和收缩的特征,以及响应于运动和其他条件的再生潜力。在调节骨骼肌可塑性时已经研究了多个信号传导因素,包括代谢物,激酶,受体和转录因子。最近,雌激素相关的受体(ERR)已成为控制骨骼肌稳态的关键转录中心。ERRα和ERRγ-肌肉中的两个高度表达的ERR子类型对各种细胞外提示做出反应,例如运动,缺氧,禁食和饮食因素,进而调节骨骼肌中基因表达。另一方面,糖尿病和肌肉营养不良等疾病抑制骨骼肌中错误的表达,可能导致疾病进展。我们突出了骨骼肌中错误的关键功能,包括纤维类型的调节,线粒体代谢,血管化和再生。我们还描述了如何在骨骼肌中调节错误以及它们与重要肌肉调节剂的相互作用(例如AMPK和PGC)。 最后,我们确定了对骨骼肌中错误信号传导的理解的关键差距,并建议将来的调查领域推进错误,作为促进肌肉疾病疗法功能的潜在目标。AMPK和PGC)。最后,我们确定了对骨骼肌中错误信号传导的理解的关键差距,并建议将来的调查领域推进错误,作为促进肌肉疾病疗法功能的潜在目标。
目的:肥大细胞(MC)Fc ε RI依赖性激活和脱颗粒在过敏性疾病中起重要作用。我们之前已证明基于三苯基膦(TPP)的抗氧化剂SkQ1可抑制肥大细胞脱颗粒,但这种抑制的确切机制仍不清楚。本研究重点研究基于TPP的化合物SkQ1和C 12 TPP对MC脱颗粒过程中Fc ε RI依赖性线粒体功能障碍和信号传导的影响。主要方法:用抗二硝基苯基IgE致敏MC,并用BSA偶联的二硝基苯基刺激MC。通过β-己糖胺酶释放来估计MC的脱颗粒。通过对接头分子LAT、激酶Syk、PI3K、Erk1/2和p38的Western印迹分析确定基于TPP的化合物对Fc ε RI依赖性信号传导的影响。荧光显微镜用于评估线粒体参数,例如形态、膜电位、活性氧和 ATP 水平。主要发现:用基于 TPP 的化合物进行预处理可显著降低 Fc ε RI 依赖的 MC 脱颗粒。基于 TPP 的化合物还可以防止线粒体功能障碍(线粒体 ATP 水平下降和线粒体裂变),并降低 Erk1/2 激酶磷酸化。U0126 选择性抑制 Erk1/2 还可以减少 β -己糖胺酶释放并防止 Fc ε RI 依赖的 MC 脱颗粒期间的线粒体碎裂。意义:这些发现扩展了对线粒体在 MC 激活中的作用的基本理解。它还为开发用于治疗过敏性疾病的线粒体靶向药物提供了理论依据。
fi g u r e e e er。在左侧,小组在健康条件下说明了ER的结构,显示了蛋白质运输的生理机制。右面板显示在慢性应激和蛋白质错误折叠状态下的ER。尤其是,持续的ER应力促进了展开的UPR信号传导的激活,以维持细胞活力和功能,从而恢复ER稳态。然而,持续的ER应力会导致钙稳态,高尔基应激和流量细胞囊泡的改变。
描述:本课程介绍血液系统癌症的独特细胞和遗传特征。它涵盖了针对这些癌症的一系列正在使用和开发的靶向治疗方法,包括针对 CD20 的单克隆抗体和抗体药物偶联物,如 brentuximab vedotin 和 inotuzumab ozogamicin。它还包括针对 FLT3、Bcl-2 和 B 细胞受体信号传导的治疗方法,以及针对多发性骨髓瘤的治疗方法,如免疫调节剂、蛋白酶体抑制剂和抗体。描述了 CAR T 细胞疗法背后的科学,包括使用该策略治疗一系列血液系统癌症的前景。
†为了了解Al 2 O 3纳米纤维的分布,已经对具有10 wt%Al 2 O 3纳米纤维的聚合物凝胶电解质进行了SEM-EDX分析,图S1。我们观察到Al 2 O 3纳米纤维的均匀分布。对于3 wt%Al 2 O 3,不太可能有聚合。另一方面,我们发现离子的扩散率在较高浓度的Al 2 O 3纳米纤维下降低。,即使较高的Al 2 O 3纳米纤维大大改善了GPE的介电常数,它们的剩余比也可能阻止离子传导的传输路径。因此,在这里,我们仅专注于3 wt%Al 2 O 3纳米纤维的GPE。
摘要 目的 胃癌基因组研究发现了影响 RHO 信号传导的高度复发性基因组改变,尤其是在弥漫性胃癌 (DGC) 组织学亚型中。这些改变包括导致粘附蛋白 CLDN18 与 RHO 调节剂 ARHGAP26 融合的染色体间翻译。这些融合构建体如何影响 RHO 通路的活性,以及它们对胃癌发展的更广泛影响仍不清楚。在此,我们开发了一个模型,让我们能够研究这种融合蛋白在 DGC 发病机制中的作用,并确定具有这些改变的 DGC 肿瘤的潜在治疗靶点。设计 我们建立了一个转基因小鼠模型,将 LSL-CLDN18-ARHGAP26 融合基因改造到 Col1A1 基因座中,在那里它的表达可以被 Cre 重组酶诱导。利用由此模型生成的类器官,我们评估了其致癌活性以及融合蛋白对 RHOA 通路的生化作用及其在 DGC 发病机制中的下游细胞生物学作用。结果我们证明,在胃类器官中诱导 CLDN18- ARHGAP26 表达会诱导印戒细胞的形成(这是 DGC 的特征),并且当与肿瘤抑制基因 Trp53 的缺失结合时能够协同转化胃细胞。CLDN18-ARHGAP26 促进 RHOA 和下游效应信号传导的激活。从分子上讲,融合促进粘着斑激酶 (FAK) 的激活和 YAP 通路的诱导。FAK 和 YAP/TEAD 抑制的组合可以显著阻断肿瘤生长。结论这些结果表明,CLDN18-ARHGAP26 融合是一种获得功能的 DGC 致癌基因,可导致 RHOA 的激活以及 FAK 和 YAP 信号的激活。这些结果主张进一步评估新兴的 FAK 和 YAP-TEAD 抑制剂对这些致命癌症的作用。
前列腺癌 (PCa) 是男性中第二常见的癌症。虽然根治性前列腺切除术和放射疗法通常可以成功治疗局部疾病,但治疗后复发很常见。由于雄激素受体 (AR) 和雄激素在前列腺癌变和进展中起着至关重要的作用,因此雄激素剥夺疗法 (ADT) 通常用于剥夺 PCa 细胞的雄激素促增殖作用。ADT 通过阻断雄激素生物合成(例如阿比特龙)或阻断 AR 功能(例如比卡鲁胺、恩杂鲁胺、阿帕鲁胺、达洛他胺)起作用。ADT 通常在最初抑制 PCa 生长和进展方面有效,但 ADT 后出现去势抵抗性 PCa 和进展为神经内分泌样 PCa 是主要的临床挑战。因此,迫切需要找到调节雄激素信号的新方法,以阻止 PCa 进展,同时防止或延迟治疗抵抗。雄激素和表观转录组信号传导的机制融合为治疗 PCa 提供了一种潜在的新方法。表观转录组涉及 mRNA 的共价修饰,特别是在本综述中提到的 N(6)-甲基腺苷 (m 6 A) 修饰。m 6 A 参与调节 mRNA 剪接、稳定性和翻译,最近已被证明在 PCa 和雄激素信号传导中发挥作用。m 6 A 修饰受含 METTL3 的甲基转移酶复合物以及 FTO 和 ALKBH5 RNA 去甲基化酶的动态调节。鉴于需要新的方法来治疗 PCa,人们对针对调节 AR 表达和雄激素信号传导的 m 6 A 的新疗法产生了浓厚的兴趣。本综述严格总结了此类表观转录组疗法对 PCa 患者的潜在益处。
tim-3被认为是癌症免疫疗法的靶标。在T细胞中,抑制性和激活功能已归因于该分子。 其作用可能取决于T细胞的状态以及能够执行功能配对的相互作用伙伴的存在。 已提出癌胚抗原相关的细胞粘附分子(CEACAM1)来结合TIM-3并调节其功能。 使用T细胞报告程序平台,我们确定了CEACAM1介导的抑制作用,但是CEACAM1在功能上没有参与TIM-3。 TIM-3和CECAM1共表达仅限于激活的T细胞的一小部分。 此外,在广泛的结合研究中获得的结果不支持TIM-3和CECAM1之间的相互作用。 源自tim-3诱导的抑制性信号传导的细胞质序列。 我们的结果表明TIM-3功能与CEACAM1无关,并且该受体具有促进人T细胞中抑制性信号传导途径的能力。在T细胞中,抑制性和激活功能已归因于该分子。其作用可能取决于T细胞的状态以及能够执行功能配对的相互作用伙伴的存在。癌胚抗原相关的细胞粘附分子(CEACAM1)来结合TIM-3并调节其功能。使用T细胞报告程序平台,我们确定了CEACAM1介导的抑制作用,但是CEACAM1在功能上没有参与TIM-3。TIM-3和CECAM1共表达仅限于激活的T细胞的一小部分。此外,在广泛的结合研究中获得的结果不支持TIM-3和CECAM1之间的相互作用。源自tim-3诱导的抑制性信号传导的细胞质序列。我们的结果表明TIM-3功能与CEACAM1无关,并且该受体具有促进人T细胞中抑制性信号传导途径的能力。