2 = 1 。通过传输经典信息并借助一对额外的纠缠量子比特,可以将这个量子比特从发送器传送到接收器。隐形传态协议不需要传输量子比特 ψ ⟩ 本身,而是使用通过经典信道传递的经典信息以及通过量子信道传递的预共享纠缠量子比特之一,在接收器处重建原始量子比特的副本。因此,QT 系统具有双经典量子信道。更明确地说,通过贝尔测量在发送器处提取有关量子比特 ψ ⟩ 的信息,然后通过经典信道将结果传递给接收器。此信息决定了在预共享量子比特上适当应用单量子比特门,以在接收器处重现隐形传态量子比特的原始状态 ψ ⟩。请注意,在测量之前,量子信道用于从发射器到接收器共享一个纠缠量子比特。然而,只有在实现硬件中的噪声水平较低且经典传输和量子传输均无错误的情况下,隐形传态协议才有效。因此,必须结合量子纠错来保护预共享纠缠量子比特的传输。同样,也需要经典纠错来将测量结果从发射器可靠地传输到接收器。还必须确保传输的安全性,尤其是在量子信道中。经典信道或量子信道(或两者)中的错误都会降低最终隐形传态量子比特的保真度。人们通常认为在隐形传态协议中信道误差可以忽略不计。然而,当隐形传态
双向隐形传态是通过共享资源状态和本地操作与经典通信 (LOCC) 在双方之间交换量子信息的基本协议。在本文中,我们开发了两种看似不同的方法来量化非理想双向隐形传态的模拟误差,即通过归一化钻石距离和信道不保真度,并证明它们是等效的。通过将 LOCC 允许的操作集放宽到完全保留部分转置正性的操作集,我们获得了非理想双向隐形传态模拟误差的半正定规划下限。我们针对几个关键示例评估了这些界限:当根本没有资源状态时以及对于各向同性和沃纳状态,在每种情况下都找到了一个解析解。上述第一个示例为经典与量子双向隐形传态建立了基准。另一个示例包括由广义振幅阻尼通道对两个贝尔状态的作用产生的资源状态,我们为其找到了模拟误差的解析表达式,该解析表达式与数值估计一致(最高可达数值精度)。然后,我们评估了 [Kiktenko et al ., Phys. Rev. A 93 , 062305 (2016)] 提出的一些双向隐形传态方案的性能,发现它们不是最优的,并且没有超出上述双向隐形传态的经典极限。我们提出了一种可证明是最优的替代方案。最后,我们将整个开发推广到双向受控隐形传态的设置,其中有一个额外的协助方帮助交换量子信息,并且我们为该任务建立了模拟误差的半正定规划下限。更一般地,我们提供了使用共享资源状态和 LOCC 的二分和多分信道模拟性能的半正定规划下限。
四个贝尔态 | φ + ⟩ 、 | ψ + ⟩ 、 | φ − ⟩ 和 | ψ − ⟩ 是正交的,因此可以通过量子测量区分。因此,在收到 Alice 的变换量子比特(EPR 对中她的一半)后,Bob 可以测量两个量子比特并恢复 b 0 b 1 。因此,一个量子比特携带两个经典信息比特;这是超密集编码。我们在上面看到了一个例子,其中 Bob 使用图 2 中所示的逆贝尔电路从 | φ + ⟩ 恢复了 | 00 ⟩。
我们研究了使用由通过分束器发送的纯乘积态形成的纠缠态进行连续变量门隐形传态。我们表明,对于(通常)非幺正门,此类状态是 Choi 态,并且我们推导出隐形传态的相关 Kraus 算子,该算子可用于实现输入状态上的非高斯、非幺正量子操作。通过这一结果,我们展示了如何使用门隐形传态对使用 Gottesman-Kitaev-Preskill (GKP) 代码编码的玻色子量子比特进行纠错。该结果是在确定性产生的宏节点簇状态的背景下提出的,这些状态由恒定深度线性光学网络生成,并补充了 GKP 状态的概率供应。我们的技术的结果是,无需主动压缩操作即可实现门隐形传态和纠错的状态注入——这是量子光学实现的实验瓶颈。
由于这些引脚作为量子比特[1]使用,因此仅利用光子吸收这一自然现象便可实现光子-电子纠缠测量(③)[2]。 3. 结果与讨论 我们将六个碱基对应的偏振光转移到庞加莱球上并进行断层扫描,得到了所有偏振保真度超过 80% 的结果(图 2)。这种保真度远远超过了经典极限(66%),并证明我们的转移是具有量子特性的量子态转移。传输保真度恶化的原因被认为是氮核自旋的初始化速度不完善。通过改善这一点,有望提高传输保真度。 4. 结论与展望我们成功地实现了光子的偏振态到氮核自旋的量子转移。未来,我们的目标不仅在于提高转录保真度,还在于将量子态转录到钻石中也存在的碳同位素的核自旋中。 5.参考文献 [1] Y. Sekiguchi, H.Kosaka 等,Nature Commun. 7, 11668 (2016)。 [2] H. Kosaka 和 N. Niikura,Phys. Rev. Lett.
量子隐形传态在量子通信领域有着重要的应用。本文研究了以GHZ态和非标准W态为量子信道在噪声环境中的量子隐形传态。通过解析求解Lindblad形式的主方程分析了量子隐形传态的效率。遵循量子隐形传态协议,得到了量子隐形传态保真度随演化时间的变化关系。计算结果表明,在相同的演化时间下,非标准W态的隐形传态保真度高于GHZ态。此外,我们考虑了在振幅衰减噪声条件下,采用弱测量和逆量子测量的隐形传态效率。我们的分析表明,在相同条件下,采用非标准W态的隐形传态保真度也比GHZ态更能抵御噪声。有趣的是,我们发现在振幅衰减噪声环境下,弱测量及其逆操作对GHZ和非标准W态的量子隐形传态效率没有积极影响。此外,我们还证明,通过对协议进行微小修改,可以提高量子隐形传态的效率。
2008 年,一种新颖的基于端口的隐形传态协议(PBT)被提出 [14, 15]。与 [5] 中发现的第一个隐形传态程序不同,它不需要接收方根据发送方测量的经典结果进行校正,见图 1。无需校正导致了许多普通隐形传态无法实现的新应用,例如 NISQ 协议 [3, 14]、基于位置的密码学 [4]、量子信道鉴别的基本限制 [24]、非局域性与复杂性之间的联系 [7],以及许多其他重要结果 [8, 16, 21, 23, 25, 27]。无需接收方校正带来的巨大优势是有代价的。根据无编程定理 [22],只有当各方利用无限数量的最大纠缠对时,这种方案中的理想传输才有可能。因此,我们区分了确定性场景和概率场景,前者是隐形传态不完美,隐形传态后的状态被扭曲,后者是隐形传态完美,但必须接受整个过程的非零失败概率。在第一种情况下,要学习
随着通信技术的升级和量子计算的飞速发展,经典的数字签名方案面临着前所未有的挑战,对量子数字签名的研究势在必行。本文提出一种基于五量子比特纠缠态受控量子隐形传态的多代理签名方案。该方案采用量子傅里叶变换作为加密方法对消息进行加密,与量子一次一密相比提高了量子效率。采用满足量子比特阈值量子纠错要求的五量子比特最大纠缠态作为量子通道,保证了方案的稳定性。安全性分析表明,该方案具有不可伪造、不可否认的特点,能够抵抗截获重发攻击。
量子纠缠作为一种重要资源是量子力学最显著的特征之一,在量子信息论、量子隐形传态[1]、通信和量子计算[2,3]中都发挥着核心作用。由于其基础性作用,在分离子系统之间产生纠缠态是一个重要课题。近年来,已提出了多种产生纠缠态的方法,其中之一就是 Jaynes-Cummings 模型 (JCM)。JCM 解释了量化电磁场和原子之间的相互作用 [4]。JCM 是一个简单但适用的工具。在过去的二十年里,人们致力于将 JCM 应用到量子信息[5-7]和量子隐形传态[8]中。由 JCM 诱导的纠缠态已被用作量子通道 [9]。 Zang 等人 [10] 利用两能级原子与大失谐单模腔场相互作用,将二分非最大纠缠态转变为 W 态。原子与单模电磁腔场相互作用的纠缠动力学已被研究 [11]。由于 JCM 在量子光学中的重要性,它已被扩展
卫星量子通信的进步旨在通过提高传输信息的安全性来重塑全球电信网络。在这里,我们研究了大气湍流对地面站和卫星之间光学区域中连续变量纠缠分布和量子隐形传态的影响。更具体地说,我们研究了在下行链路和上行链路场景中,由于分布中的各种误差源(即衍射、大气衰减、湍流和探测器效率低下)导致的纠缠退化。由于使用这些分布式纠缠资源的量子隐形传态协议的保真度不够,我们包括一个中间站,用于状态生成或光束重新聚焦,以分别减少大气湍流和衍射的影响。结果表明,在低地球轨道区域的下行链路中,自由空间纠缠分布和量子隐形传态是可行的,但在中间站的帮助下,在上行链路中也是可行的。最后,完成恶劣天气条件下微波光学比较研究,以及地地和卫星间量子通信水平路径研究。