自从Bennett等人[1]首次提出量子隐形传态的概念以来,量子信息处理在近年来得到了很大的发展,随后量子信息传输引起了人们的浓厚兴趣,例如受控隐形传态[2]、量子克隆[3,4]、量子态共享[5,6]、量子安全直接通信[7,8]等。此外,Lo[9]和Pati[10]提出了一种新的方法,称为远程状态准备(RSP)。与量子隐形传态相比,RSP需要的经典通信代价和纠缠代价更小。由于这些独特的优势和特点,各种RSP协议在理论和实验上被广泛提出[11–24]。例如,Dai等人[12]提出了一种通过部分纠缠态远程准备两量子比特纠缠态的新方案。随后,Wang 等人 [ 14 ] 提出了一种通过两个部分纠缠的 Greenberger–Horne–Zeilinger 态 (GHZ) 远程制备四粒子团簇态的方案。最近,Wei 等人 [ 16 ] 介绍了一种远程制备任意
项目委员会 教授 Dietmar K. Hennecke 博士 M. le Professeur Jacques Chauvin Ing.克劳迪奥·芬奇(主席)Laboratoire d'Energetique et de FIAT Aviazione s.p.a. Fachgebiet Flugantriebe Micanique des Fluides Progettazione Technische Hochschule Darmstadt Internes (LEMFI) Corso Ferrucci 112 Petersenstrasse 30 Campus Universitaire 10138 Torino, Italy W-6100 Darmstadt。德国 Bt 502 91405 Orsay Cedex,法国 William W. Wagner 先生 Robert Bill 博士技术总监(代码 07) 美国陆军推进局 David P. Kenny 先生海军空气推进中心 NASA Lewis 研究中心分析工程总监 P.O.邮箱 7176 邮局 77-12 Pratt and Whitney Canada, Inc. 特伦顿。新泽西州 08628-0176 21000 Brookpark Road 1000 Marie-Victorin 美国俄亥俄州克利夫兰 44135 朗格伊。加拿大魁北克 美国 David Way 先生 Jose J. Salva Monfort 教授 涡轮机械主管 Frans Breugelmans 教授 推进技术高等学校 涡轮机械系主任,法国航空工程师学院 国防研究机构 助理主任 Plaza Cardenal Cisneros 3 (航空航天部)RAE von Kirman 研究所,地址:28040 Madrid。西班牙 Pyestock。法恩伯勒,流体动力学 Hants GU14 OLS 72 Chaussee de Waterloo 英国 1640 Rhode St Gen•se,比利时
项目委员会 教授 Dietmar K. Hennecke 博士 M. le Professeur Jacques Chauvin Ing.克劳迪奥·芬奇 (主席) Laboratoire d'Energetique et de FIAT Aviazione spa Fachgebiet Flugantriebe Micanique des Fluides Progettazione Technische Hochschule Darmstadt Internes (LEMFI) Corso Ferrucci 112 Petersenstrasse 30 Campus Universitaire 10138 Torino, Italy W-6100 Darmstadt。德国 Bt 502 91405 Orsay Cedex,法国 Mr William W. Wagner Dr Robert Bill 技术总监(代码 07) 美国陆军推进局 Mr David P. Kenny 海军空气推进中心 NASA Lewis 研究中心主任,分析工程 PO Box 7176 Mail Stop 77-12 Pratt and Whitney Canada, Inc. 特伦顿。新泽西 08628-0176 21000 Brookpark Road 1000 Marie-Victorin 美国 俄亥俄州克利夫兰 44135 Longueuil。 加拿大魁北克 美国 David Way 先生 Jose J. Salva Monfort 教授 涡轮机械主管 Frans Breugelmans 教授 推进技术高等学院 涡轮机械系主任 Ingenieros Aeronauticos 国防研究机构 助理主任 Plaza Cardenal Cisneros 3(航空航天部门) RAE von Kirman 研究所 28040 马德里。 西班牙 Pyestock。 Farnborough,流体动力学 Hants GU14 OLS 72 Chaussee de Waterloo 英国 1640 Rhode St Gen•se,比利时
研究了有限尺寸开放费米-哈伯德链中的长距离纠缠以及端到端量子隐形传态。我们展示了费米-哈伯德模型基态支持最大长距离纠缠的特性,这使其可以作为高保真度长距离量子隐形传态的量子资源。我们确定了创建可扩展长距离纠缠的物理特性和条件,并分析了其在库仑相互作用和跳跃幅度影响下的稳定性。此外,我们表明协议中测量基的选择会极大地影响量子隐形传态的保真度,我们认为通过选择反映量子信道显著特性的适当基,即哈伯德投影测量,可以实现完美的信息传输。
I. 简介 深空量子网络最重要的先决条件之一是能够在大基线上进行量子隐形传态和纠缠交换。将这一真正基本的量子协议扩展到地球-月球距离将扩大量子力学的有效性测试,并作为量子网络的先驱,可用于深空任务中的传感、安全通信、密集编码和量子计算机互连。迄今为止,只有长基线被动隐形传态(Pirandola2015)在长距离上得到了演示,包括进入太空(Ren 等人,2017)。在本白皮书中,我们讨论了通过深空量子链路 (DSQL) 合作(Mohageg2018)发起的超越行星尺度的完整量子隐形传态的实现。我们建议通过将地面接收器(或国际空间站 - ISS)与月球网关连接起来,在地球-月球距离范围内进行隐形传态演示。量子态隐形传态 (Bennett1993) 是一个独特的非经典概念,因为它使用两个通道将未知的量子态完美地从一个系统转移到另一个系统:最大纠缠态和经典信号。第一步是建立纠缠光子的长距离分布,如图 1(a) 所示,在太空中远距离分布,如墨子号任务所示,该任务通过快速变化分析仪在不同地面站点测量光子,在 1200 公里外进行了贝尔测试。量子隐形传态利用这种远程纠缠,如下所示 (Bouwmeester1997):首先,Charlie 生成一对纠缠光子 [图 1(b) 中的光子 A 和 B],A 发送给 Alice,B 发送给 Bob。 Alice 对光子 A 和另一个光子 C 携带的未知量子态联合进行贝尔态测量 (BSM) (Weinfurter1994、Mattle1996、Casmaglia2001),从而将她的两个光子投射到纠缠态中。这个 BSM 会将 Bob 的光子 B 投射到四种可能的状态之一,具体取决于 BSM 的结果。与此同时,Bob 必须在光子 B 到达量子存储器后将其保留,直到他通过经典信道收到 Alice 的 BSM 结果,然后他使用该结果应用幺正运算以完全恢复原始输入状态。请注意,Alice、Charlie 和 Bob 都不会获得有关输入状态的任何知识,并且最终的幺正变换仅取决于(随机)BSM 结果,因此该协议完全遵循量子无克隆 (Wooters1982)。
共晶SN-CU合金认为是有毒SN-PB焊料合金的潜在替代品之一。这项工作旨在通过研究每种需要x = 0.3和0.5 wt。%的需要次的需要次的鞭毛(BI)和银(Ag)含量的影响,从而提高共晶SN-SCU合金的机械性能,每种需要次的需要次的需要次鞭毛(BI)和银(Ag)含量对As- castectic Eutectic eutectic sn-cu alloy的机械性能的影响。使用X射线衍射(XRD)和蠕变测试机研究了三元AS-Cast Sn-Cu-X(X = BI或Ag)合金。 结果表明,在Eutectic Sn-Cu合金中添加0.3和0.5 wt。%的BI添加不会促进CU6SN5 IMC的形成,而只是将其从102转移到202个方向。 上述BI添加已完善了β-SN粒径和扩大的Cu6SN5 IMC,因此减少了晶格失真,通过在室温下(RT)的不同载荷(RT),通过拉伸载荷通过拉伸载荷来直接增强了这些AS铸造合金的机械性能和可靠性。 将BI的0.3和0.5 wt。在铸物的共晶合金中加入其他IMC(AG3SN),与Cu6Sn5相形成了其他IMC(AG3SN),由于其不同的晶体结构(AG3SN(orthorhombombic)和Cu6sn5(hex)),与其匹配的CU6SN5相位不匹配它。 为此,结构稳定性下降,导致外力的电阻较低,机械可靠性低。 机械改进(高破裂时间(5498.85 s),低应变速率和应力指数(9.48))已与BI添加0.5 wt。与其他添加相比,BI添加0.5 wt。与其高结构稳定性密切相关。三元AS-Cast Sn-Cu-X(X = BI或Ag)合金。结果表明,在Eutectic Sn-Cu合金中添加0.3和0.5 wt。%的BI添加不会促进CU6SN5 IMC的形成,而只是将其从102转移到202个方向。上述BI添加已完善了β-SN粒径和扩大的Cu6SN5 IMC,因此减少了晶格失真,通过在室温下(RT)的不同载荷(RT),通过拉伸载荷通过拉伸载荷来直接增强了这些AS铸造合金的机械性能和可靠性。将BI的0.3和0.5 wt。在铸物的共晶合金中加入其他IMC(AG3SN),与Cu6Sn5相形成了其他IMC(AG3SN),由于其不同的晶体结构(AG3SN(orthorhombombic)和Cu6sn5(hex)),与其匹配的CU6SN5相位不匹配它。为此,结构稳定性下降,导致外力的电阻较低,机械可靠性低。机械改进(高破裂时间(5498.85 s),低应变速率和应力指数(9.48))已与BI添加0.5 wt。与其他添加相比,BI添加0.5 wt。与其高结构稳定性密切相关。从机械的角度来看,建议使用SN-0.7CU-0.5BI合金成为大规模生产和加工焊接和电子组件的最可靠合金。