英国利兹大学利兹大学的地理学和水学院; B英国利兹大学土木工程学院B; C以色列贝特达根农业部土壤侵蚀研究站土壤保护部; D Kinneret Limnological实验室,以色列海洋学和林木研究,以色列米格达尔; E Zuckerberg水研究所,雅各布·布莱斯坦(Jacob Blaustein)的沙漠研究研究所,以色列内盖夫本·古里安大学; F Yorkshire Water Services Ltd,英国布拉德福德; G德国玛格德堡的Helmholtz环境研究中心水生生态系统分析与管理部; H英国伯明翰伯明翰大学地理,地球与环境科学学院; I IHCANTABRIA - 西班牙桑坦德市的de la la cantabria Instituto dehidráulicaInstituto; J布里斯托尔大学布里斯托尔大学工程,数学和技术学院J; K Escuela de Ingenieria y Ciencias,Tecnologico de Monterrey,墨西哥Nuevo
随着抗生素耐药性不断上升到危险水平,我们面临失去抗生素效力的风险。新开发的药物失效速度比过去几十年快得多,而我们新发明的速度却令人担忧地落后。这一瓶颈迫使我们重新评估关于如何使用现有抗生素的战斗策略。治疗药物监测 (TDM) 是一种临床实践,用于测量血液或血浆中或可与血液药物水平相关的其他生物体液中的药物浓度。抗生素治疗的成功在很大程度上取决于能否将抗生素浓度保持在治疗范围内,以适应患者独特的药代动力学/药效动力学 (PK/PD)。然而,在目前的实践中,这个操作窗口是根据数据确定的
海军优势 使用光纤 DTS 技术可为海军带来多种潜在优势。首先,它是唯一能够高分辨率识别大面积渗漏的技术。这可验证并改进地下水和污染物运输模型。它可精确定位值得关注的区域并排除渗漏程度极低或没有渗漏的区域。例如,最近一项 50 英亩的 DTS 研究发现,渗漏发生在不到 5% 的场地面积内。这种高分辨率数据可提高后续调查的成本效益,并让监管机构更加确信该场地的特征已得到充分描述。
i,Kobi P. Bermingham,证明本文所做的工作是我的原始工作,并且尚未随时在Maynooth University或任何其他机构提交。我还证明,它尚未从出版的书,照片,杂志或其他人中复制。
化学性侵犯转移性结直肠癌(MCRC)的患者预后不佳。使用程序性细胞死亡蛋白1(PD-1)/程序性细胞死亡配体1(PD-L1)抑制剂的应用鼓励改善MCRC微卫星不稳定性高(MSI-H)/不匹配修复维修剂(DMMR)的生存。不幸的是,对于MCRC而言,微卫星稳定(MSS)/优先不匹配修复(PMMR)无效,占MCRC的95%。放射疗法可以通过直接杀死肿瘤细胞并诱导阳性免疫活性来促进局部控制,这可能有助于协同进行免疫疗法。我们介绍了一名先进的MSS/PMMR MCRC患者,该患者在第一线化学疗法,姑息手术和二线化学疗法结合靶向疗法后患有进行性疾病(PD)。然后,患者接受了PD-1抑制剂的疗法,结合了放射疗法和粒细胞 - 巨噬细胞刺激因子(GM-CSF)。根据实体瘤版本1.1(recist1.1)的反应评估标准,该患者在三年后与无进展生存期(PFS)的三重疗法后显示了完全反应(CR),迄今为止已有2年以上的时间。患者除疲劳(1级)外没有其他明显的不良反应。三合一疗法为转移性化学难治性MSS/PMMR MCRC患者提供了有希望的策略。
主动深度传感可实现强大的深度估计,但通常受感应范围的限制。天真地增加光学能力可以改善传感范围,但对许多应用(包括自主机器人和增强现实)的视力安全关注。在本文中,我们提出了一个自适应的主动深度传感器,该传感器可以共同介绍范围,功耗和眼部安全。主要观察结果是,我们不需要将光模式投影到整个场景,而只需要在关注的小区域中,在应用程序和被动立体声深度所需的深度失败的情况下。理论上将这种自适应感知方案与其他感应策略(例如全帧投影,线扫描和点扫描)进行了比较。我们表明,为了达到相同的最大感应距离,提出的方法在最短(最佳)眼部安全距离时会消耗最小的功率。我们用两个硬件原型实现了这种自适应感测方案,一个具有仅相位空间光调制器(SLM),另一个带有微电动机械(MEMS)镜像和衍射光学元素(DOE)。实验结果验证了我们方法的优势,并证明了其能力自适应地获得更高质量的几何形状。请参阅我们的项目网站以获取视频结果和代码:
液体分析是跟踪食品、饮料和化学制造等行业是否符合严格的工艺质量标准的关键。为了在线并在最感兴趣的点分析产品质量,自动监控系统必须满足小型化、能源自主性和实时操作方面的严格要求。为了实现这一目标,我们介绍了在神经形态硬件上运行的人工味觉的第一个实现,用于连续边缘监控应用。我们使用固态电化学微传感器阵列来获取多变量、随时间变化的化学测量值,采用时间滤波来增强传感器读出动态,并部署基于速率的深度卷积脉冲神经网络来有效融合电化学传感器数据。为了评估性能,我们创建了 MicroBeTa(微传感器味道测试),这是一个用于饮料分类的新数据集,包含 3 天内进行的 7 小时时间记录,包括传感器漂移和传感器更换。我们实现的人工品味在推理任务上的能效比在其他商用低功耗边缘 AI 推理设备上运行的类似卷积架构高出 15 倍,在 USB 棒外形尺寸中包含的单个英特尔 Loihi 神经形态研究处理器上实现了比传感器读数采样周期低 178 倍以上的延迟和高精度(97%)。
