对于某些可区分的函数h:r d→r和d二维向量的总数。这种特征的示例包括例如总均值,比率或相关系数。这也称为有限的人口推断问题(Beaumont和Haziza 2022)。我们进一步假设n很大,每个单个实验的计算成本也是不可行的。在这种情况下,研究经常诉诸于子采样。亚采样方法在过去几年中的人口急剧增加。例如,MA,Mahoney和Yu(2015); Ma等。(2022)引入了大数据回归的杠杆采样,随后启发了逻辑回归的类似发展(Wang,Zhu,Zhu和Ma 2018; Yao and Wang 2019)广义线性模型(AI等人。2021b; Yu等。2022)和分位回归(Ai等人2021a; Wang,Peng和Zhao 2021)。同样,Dai,Song和Wang(2022)开发了
英国利兹大学利兹大学的地理学和水学院; B英国利兹大学土木工程学院B; C以色列贝特达根农业部土壤侵蚀研究站土壤保护部; D Kinneret Limnological实验室,以色列海洋学和林木研究,以色列米格达尔; E Zuckerberg水研究所,雅各布·布莱斯坦(Jacob Blaustein)的沙漠研究研究所,以色列内盖夫本·古里安大学; F Yorkshire Water Services Ltd,英国布拉德福德; G德国玛格德堡的Helmholtz环境研究中心水生生态系统分析与管理部; H英国伯明翰伯明翰大学地理,地球与环境科学学院; I IHCANTABRIA - 西班牙桑坦德市的de la la cantabria Instituto dehidráulicaInstituto; J布里斯托尔大学布里斯托尔大学工程,数学和技术学院J; K Escuela de Ingenieria y Ciencias,Tecnologico de Monterrey,墨西哥Nuevo
主动深度传感可实现强大的深度估计,但通常受感应范围的限制。天真地增加光学能力可以改善传感范围,但对许多应用(包括自主机器人和增强现实)的视力安全关注。在本文中,我们提出了一个自适应的主动深度传感器,该传感器可以共同介绍范围,功耗和眼部安全。主要观察结果是,我们不需要将光模式投影到整个场景,而只需要在关注的小区域中,在应用程序和被动立体声深度所需的深度失败的情况下。理论上将这种自适应感知方案与其他感应策略(例如全帧投影,线扫描和点扫描)进行了比较。我们表明,为了达到相同的最大感应距离,提出的方法在最短(最佳)眼部安全距离时会消耗最小的功率。我们用两个硬件原型实现了这种自适应感测方案,一个具有仅相位空间光调制器(SLM),另一个带有微电动机械(MEMS)镜像和衍射光学元素(DOE)。实验结果验证了我们方法的优势,并证明了其能力自适应地获得更高质量的几何形状。请参阅我们的项目网站以获取视频结果和代码:
随着人工智能 (AI) 和物联网 (IoT) 的融合重新定义了行业、商业和经济的运作方式,对边缘节能和高性能计算的需求呈指数级增长。神经形态计算是一种新兴的计算范式,受到生物大脑的低功耗和并行处理能力的启发,克服了传统计算机架构的许多限制。最重要的是,通过在内存中执行计算,神经形态计算克服了冯·诺依曼瓶颈,从而提高了计算能力,同时节省了更多的面积和功耗。虽然已经开发出几种具有出色能效的独立神经形态芯片来运行特定的人工智能算法,但这种数字系统在与边缘传感器连接时仍然会受到影响。这是因为传感输入是非结构化的、非规范化的和碎片化的,这会给具有分离的传感和处理单元的数字系统带来巨大的能源、时间和布线开销。这就需要融合传感、内存和处理功能的内存传感技术,以充分发挥生物电子学和机器人学中使用的高度复杂的传感器和执行器系统的潜力。尽管内存传感和计算的概念还处于起步阶段,但它已经在电子皮肤和仿生眼等专业领域取得了重大进展。然而,这些主要是软件实现,与之相辅相成的硬件挑战尚未得到解决。要充分利用仿生边缘处理能力,仍存在硬件层面(材料和设备)的基本挑战需要解决。因此,“内存传感和计算:新材料和设备迎接新挑战”于去年启动,引发了对最新发展和观点的讨论。来自微电子、材料和计算机科学等多学科背景和不同地区的研究人员已经发表了与此相关的意见和/或原创作品
摘要:在电子垃圾日益成为全球关注的时代,可生物降解传感器的开发代表着朝着可持续环境监测迈出的关键一步。由不可生物降解材料制成的传统传感器是电子垃圾日益增多的重要原因。本文探讨了人工智能 (AI) 与可生物降解传感器的集成,这不仅可以减轻电子垃圾对环境的影响,还可以提高环境监测系统的精度、实时决策和效率。虽然这些 AI 增强型传感器提供了有希望的进步,但数据隐私、基础设施成本及其部署对环境的影响等挑战仍然存在。此外,本文还讨论了 AI 伦理和偏见缓解的关键问题,强调在开发 AI 驱动技术时需要透明、包容和跨学科的方法。讨论为 AI 增强型可生物降解传感器的未来可能性提供了见解,包括扩大应用、可生物降解材料的进步以及这些技术的道德部署。该论文强调了跨学科合作的必要性,以充分利用这些创新的潜力,同时确保它们符合可持续性和道德目标。
i,Kobi P. Bermingham,证明本文所做的工作是我的原始工作,并且尚未随时在Maynooth University或任何其他机构提交。我还证明,它尚未从出版的书,照片,杂志或其他人中复制。
纳米生物传感器和生物分析应用小组(NanoB2A)、加泰罗尼亚纳米科学与纳米技术研究所(ICN2)、CSIC、BIST 和 CIBER-BBN,贝拉特拉,08193,巴塞罗那,西班牙。电子邮件:maria.soler@icn2.cat b 大分子结构系,国立生物技术中心,高级科学研究委员会(CNB-CSIC),Darwin 3,Campus Cantoblanco UAM,28049 Madrid,西班牙 c 微生物生物技术系,国立生物技术中心,高级科学研究委员会(CNB-CSIC),Darwin 3,Campus Cantoblanco UAM,28049 Madrid,西班牙 d 综合系统生物学研究所(I2SysBio),瓦伦西亚大学-CSIC,46980,瓦伦西亚,西班牙 e 国家传染病研究所“L. Spallanzani”IRCCS,Via Portuense 292,00149,罗马,意大利 † 当前隶属关系:圣卡米勒国际健康科学大学,意大利罗马 Sant'Alessandro 大街 8 号,00131; IRCCS Sacro Cuore Don Calabria 医院,地址:via Don A. Sempreboni 5, 37024, Negrar di Valpolicella(维罗纳),意大利。