在物理和生命科学中具有广泛应用的固态量子传感器 ( 金刚石色心 -NV 氮原子空穴色心 ) ; 探索标准模型之外物理的量子传感器 ( 磁力仪和原子钟,囚禁的极性分子,自旋压缩,控制自旋退相 干,纠缠 ) ; 量子信息处理成为现实 ( 囚禁离子,约瑟夫森结 ) ; 增强型量子传感器的先进材料 ( 光晶格,固态量子缺陷,混合量子系统,拓扑材料 ) ; 用于暗区物理的量子传感器 ( 高 Q 值的射频或微波腔,基于超导干涉效应的高 Q 接收器 ) ; 基于原子干涉测量和光学原子钟的精密时空传感器 ( 量子纠缠 ( “压缩” ) 和量子控制 ( “动态解耦” )) 。
摘要:本文旨在总结基于灵活感测的软机器人相互作用研究的进展。首先,引入了软机器人实际应用中的最新进步,例如灵活的抓握,生物医学和环境探索。其次,提出了软机器人的运动学和动态建模方法。随后,分析了适用于软机器人的灵活感测技术,特别是针对讨论的讨论表现出圆润的多模式传感技术。然后,阐明了关于软机器人中传感和智能相互作用的当前研究状态,这表明了灵活的传感器用于固有和环境感知以及多峰传感的利用。重点是基于灵活传感器的软机器人的智能相互作用系统的分析。最后,讨论和预期基于灵活感测的软机器人相互作用研究中的潜在挑战和前瞻性方向。关键字:软机器人;灵活的传感;智能交互系统
本文重点介绍了位置准确性低的问题和在复杂环境中移动机器人的不良环境感知性能。它基于IMU和GP的机器人姿势信息和环境知觉信息进行了关键的技术研究,以检测机器人自己的姿势信息,以及激光雷达和3D摄像头,以感知环境信息。在“姿势信息融合层”中,粒子群处理算法用于优化BP神经网络。没有偏见的卡尔曼过滤,并实现了未经意识的卡尔曼滤波器,以实现INS-GPS松散耦合导航,从而减少了INS组件IMU的偏见和噪声。此外,当GPS信号丢失发生时,训练有素的神经网络可用于输出预测信息,以进行惯性导航系统的错误校正,提供更准确的速度,并将信息作为绝对位置约束。在环境感知融合层中,补偿的IMU预一整合性调查分别与次要水平分别与视觉探光仪和激光镜探测融合。这使机器人的实时精确定位和环境图的更精细结构。最后,使用实际收集的轨迹来验证算法,以进行multi传感器信息的两级融合。实验结果表明,该算法提高了机器人的定位准确性和环境感知性能。机器人运动轨迹和原始真实轨迹之间的最大误差为1.46 m单位,而最小误差为0.04 m单位,平均误差为0.60 m。
传感和测量是本文讨论的关键技术领域,是完全现代化电网的重要组成部分。先进的传感和测量技术将获取数据并将其转换为信息,并增强电力系统管理的多个方面。这些技术将评估设备健康状况和电网完整性。它们将支持频繁的仪表读数,消除账单估算,并防止能源盗窃。它们还将通过实现消费者选择和需求响应以及支持新的控制策略来帮助缓解拥堵并减少排放。未来,新的数字通信技术与先进的数字仪表和传感器相结合,将支持更复杂的测量和更频繁的仪表读数。它们还将促进服务提供商和消费者之间的直接互动。电力线宽带 (BPL) 和数字无线通信是可以实现这种互动的技术示例。传感和测量转型的核心影响进一步加强了其实施的理由。这些
传感和测量是本文讨论的关键技术领域,是完全现代化电网的重要组成部分。先进的传感和测量技术将获取数据并将其转换为信息,并增强电力系统管理的多个方面。这些技术将评估设备健康状况和电网完整性。它们将支持频繁的仪表读数,消除账单估算,并防止能源盗窃。它们还将通过实现消费者选择和需求响应以及支持新的控制策略来帮助缓解拥堵并减少排放。未来,新的数字通信技术与先进的数字仪表和传感器相结合,将支持更复杂的测量和更频繁的仪表读数。它们还将促进服务提供商和消费者之间的直接互动。电力线宽带 (BPL) 和数字无线通信是可以实现这种互动的技术示例。传感和测量转型的核心影响进一步加强了其实施的理由。这些