液体分析是跟踪食品、饮料和化学制造等行业是否符合严格的工艺质量标准的关键。为了在线并在最感兴趣的点分析产品质量,自动监控系统必须满足小型化、能源自主性和实时操作方面的严格要求。为了实现这一目标,我们介绍了在神经形态硬件上运行的人工味觉的第一个实现,用于连续边缘监控应用。我们使用固态电化学微传感器阵列来获取多变量、随时间变化的化学测量值,采用时间滤波来增强传感器读出动态,并部署基于速率的深度卷积脉冲神经网络来有效融合电化学传感器数据。为了评估性能,我们创建了 MicroBeTa(微传感器味道测试),这是一个用于饮料分类的新数据集,包含 3 天内进行的 7 小时时间记录,包括传感器漂移和传感器更换。我们实现的人工品味在推理任务上的能效比在其他商用低功耗边缘 AI 推理设备上运行的类似卷积架构高出 15 倍,在 USB 棒外形尺寸中包含的单个英特尔 Loihi 神经形态研究处理器上实现了比传感器读数采样周期低 178 倍以上的延迟和高精度(97%)。
美国国家航空航天局和美国国防部正在实施支持“智能”飞机发动机未来愿景的项目,以提高飞机推进系统的可负担性、性能、可操作性、安全性和可修复性。智能发动机将具有先进的控制和健康管理功能,使这些发动机能够自我诊断、自我预测和自适应,以根据发动机的当前状况或车辆的当前任务优化性能。传感器是实现智能发动机愿景所必需的关键技术,因为它们依赖于准确收集发动机控制和健康管理所需的数据。本文从控制和健康管理的角度回顾了支持智能发动机未来愿景的预期传感器要求。推进控制和健康管理技术在主动组件控制、推进健康管理和分布式控制等广泛领域进行了讨论。在这三个领域中,我们将描述单个技术,讨论控制反馈或健康管理所需的输入参数,并总结用于测量这些参数的传感器性能规格。
ICASSCT 2024 会议的主要目标是推动传感器、信号处理和通信领域各方面的创新。会议遵循广泛的盲审流程,选出最佳论文进行演讲,其中包括专门为推进技术、系统和基础设施而设计的技术论文、教程、研讨会和行业会议。会议旨在从通信和信息理论到使用信号处理技术实现、评估和改进实际通信系统的性能。
随着抗生素耐药性不断上升到危险水平,我们面临失去抗生素效力的风险。新开发的药物失效速度比过去几十年快得多,而我们新发明的速度却令人担忧地落后。这一瓶颈迫使我们重新评估关于如何使用现有抗生素的战斗策略。治疗药物监测 (TDM) 是一种临床实践,用于测量血液或血浆中或可与血液药物水平相关的其他生物体液中的药物浓度。抗生素治疗的成功在很大程度上取决于能否将抗生素浓度保持在治疗范围内,以适应患者独特的药代动力学/药效动力学 (PK/PD)。然而,在目前的实践中,这个操作窗口是根据数据确定的
随着人工智能 (AI) 和物联网 (IoT) 的融合重新定义了行业、商业和经济的运作方式,对边缘节能和高性能计算的需求呈指数级增长。神经形态计算是一种新兴的计算范式,受到生物大脑的低功耗和并行处理能力的启发,克服了传统计算机架构的许多限制。最重要的是,通过在内存中执行计算,神经形态计算克服了冯·诺依曼瓶颈,从而提高了计算能力,同时节省了更多的面积和功耗。虽然已经开发出几种具有出色能效的独立神经形态芯片来运行特定的人工智能算法,但这种数字系统在与边缘传感器连接时仍然会受到影响。这是因为传感输入是非结构化的、非规范化的和碎片化的,这会给具有分离的传感和处理单元的数字系统带来巨大的能源、时间和布线开销。这就需要融合传感、内存和处理功能的内存传感技术,以充分发挥生物电子学和机器人学中使用的高度复杂的传感器和执行器系统的潜力。尽管内存传感和计算的概念还处于起步阶段,但它已经在电子皮肤和仿生眼等专业领域取得了重大进展。然而,这些主要是软件实现,与之相辅相成的硬件挑战尚未得到解决。要充分利用仿生边缘处理能力,仍存在硬件层面(材料和设备)的基本挑战需要解决。因此,“内存传感和计算:新材料和设备迎接新挑战”于去年启动,引发了对最新发展和观点的讨论。来自微电子、材料和计算机科学等多学科背景和不同地区的研究人员已经发表了与此相关的意见和/或原创作品
摘要:在电子垃圾日益成为全球关注的时代,可生物降解传感器的开发代表着朝着可持续环境监测迈出的关键一步。由不可生物降解材料制成的传统传感器是电子垃圾日益增多的重要原因。本文探讨了人工智能 (AI) 与可生物降解传感器的集成,这不仅可以减轻电子垃圾对环境的影响,还可以提高环境监测系统的精度、实时决策和效率。虽然这些 AI 增强型传感器提供了有希望的进步,但数据隐私、基础设施成本及其部署对环境的影响等挑战仍然存在。此外,本文还讨论了 AI 伦理和偏见缓解的关键问题,强调在开发 AI 驱动技术时需要透明、包容和跨学科的方法。讨论为 AI 增强型可生物降解传感器的未来可能性提供了见解,包括扩大应用、可生物降解材料的进步以及这些技术的道德部署。该论文强调了跨学科合作的必要性,以充分利用这些创新的潜力,同时确保它们符合可持续性和道德目标。
许多神经系统条件会破坏大脑与其环境之间的信息流。这些疾病包括大脑或脊髓损伤,肌萎缩性侧面硬化症(ALS),脑干中风,多发性硬化症等。这些疾病和其他退化性疾病会损害控制肌肉或损害肌肉本身的神经途径。严重的病例可能导致自愿控制的丧失,包括眼动和呼吸。因此,受影响的个体可能会完全锁定在自己的身体上,无法以任何方式进行交流。现代医疗技术可以使许多如此瘫痪的人过长寿,这加剧了他们的疾病的个人,社会和经济负担。没有治愈这些疾病的任何选择,还保留了三个用于恢复功能的选项[1,2]。第一种选择是增加剩余输出选项的功能。换句话说,仍处于自愿控制的肌肉可以代替瘫痪的肌肉。这种替代通常在实践中受到限制,但仍然有用。对于特殊的技术,借助适当的技术,严重瘫痪的个体可以使用眼动来控制计算机[3];否则他们可能会使用手动作来产生合成语音[4-9]。第二种选择是通过绕过受损的通用途径来恢复功能。例如,脊髓损伤的患者可以使用高于病变水平的肌肉活动来控制瘫痪的肌肉的电刺激,
i,Kobi P. Bermingham,证明本文所做的工作是我的原始工作,并且尚未随时在Maynooth University或任何其他机构提交。我还证明,它尚未从出版的书,照片,杂志或其他人中复制。
主动深度传感可实现强大的深度估计,但通常受感应范围的限制。天真地增加光学能力可以改善传感范围,但对许多应用(包括自主机器人和增强现实)的视力安全关注。在本文中,我们提出了一个自适应的主动深度传感器,该传感器可以共同介绍范围,功耗和眼部安全。主要观察结果是,我们不需要将光模式投影到整个场景,而只需要在关注的小区域中,在应用程序和被动立体声深度所需的深度失败的情况下。理论上将这种自适应感知方案与其他感应策略(例如全帧投影,线扫描和点扫描)进行了比较。我们表明,为了达到相同的最大感应距离,提出的方法在最短(最佳)眼部安全距离时会消耗最小的功率。我们用两个硬件原型实现了这种自适应感测方案,一个具有仅相位空间光调制器(SLM),另一个带有微电动机械(MEMS)镜像和衍射光学元素(DOE)。实验结果验证了我们方法的优势,并证明了其能力自适应地获得更高质量的几何形状。请参阅我们的项目网站以获取视频结果和代码: