摘要 - 本文介绍了Clipswap,这是一种专为高保真面部交换而设计的新框架。面部交换的早期方法通常是由于目标和源图像之间属性的不匹配而在身份转移中挣扎。要处理这个问题,我们的工作中提出了一种属性 - 意识到的面部交换方法。我们使用有条件的生成对抗网络和基于剪辑的编码器,该网络提取丰富的语义知识以实现属性 - 意识到的面部交换。我们的框架使用面部交换过程中的剪辑嵌入,通过完善从源图像获得的高级语义属性,将源图像的身份详细信息传输到交换图像中。和源图像用作剪辑的输入参考图像,并确保最终结果中更准确,更详细的身份表示形式。此外,我们采用对比度损失来指导源面部属性从各种视点转换到交换图像上。我们还引入了属性保存损失,这会惩罚网络以保持目标图像的面部属性。多PLE数据集上的彻底定量和定性评估说明了高质量交换结果。我们提出的剪贴画在面部交换中优于先前的最新方法(SOTA)方法,尤其是在身份转移和面部属性特征方面。
极化是经典和量子制度中光最基本的特征之一。因此,控制(或确定)光的极化状态的能力对于许多科学技术领域至关重要,实际上,使用光(从摄影到量子加密到量子加密),依赖于这种能力的每个应用都具有光线。多种机制负责任地扰动光 - 物质相互作用的光的极化,其中首席是反射。例如,圆极化的惯性在正常发生率下逆转,而线性极化在反射后的斜发生下变成椭圆形[1]。鉴于镜子在光学系统中很难避免,因为它们被广泛用于重定向光或建筑光腔,将极化控制嵌入镜子中有助于最大程度地减少所需的光学组件的数量(并且,因此,大小)并提高光学系统的效率。随着当前驱动光谱,传感和光学信号处理的光学系统的驱动而变得越来越重要,更不用说基于分布式bragg反射器的紧凑光源的开发,例如垂直腔表面发射激光器。
DNA纳米技术涉及可用于生物技术,医学和诊断的非天然DNA纳米结构的设计。在这项研究中,我们引入了一个核酸五向连接(5WJ)结构,用于直接对全长生物RNA的电化学分析。据我们所知,这是通过附着在固体支持上的杂交探针对如此长的核酸序列审问的第一份报告。发夹状电极结合的寡核苷酸与三个适配器链杂交,其中一条用甲基蓝色(MB)标记。仅在存在特定DNA或RNA分析物的情况下,将四个链组合成5WJ结构。在总RNA样品中对全尺寸16S rRNA的询问后,与替代设计的电化学核酸生物传感器相比,电极结合的MB标记的5WJ关联产生的信号比率更高。这个优势归因于在电极表面形成的5WJ纳米结构上的有利几何形状。5WJ生物传感器是传统电化学生物传感器的一种成本效益替代品,用于分析核酸,这是由于电极结合和MB标记的DNA成分的普遍性。
过渡,粒子裂纹,电极断裂,气泡爆发和lm形成。通过应用AE技术,可以实时识别AE事件,而不会中断电池电池的正常功能。几项研究探索了使用AE感应与电化学性能指标的使用来估计和预测电荷状态(SOC),健康状况(SOH)等。,商业细胞。2,3这些细胞,用于实际应用中,o n具有复杂的细胞格式。这些细胞内产生的瞬时弹性波必须穿过各种材料和介质才能到达传感器。材料中的这种变化使波传播复杂化,使其更加挑剔以准确评估AE响应。危险,例如热失控,短路和容量淡出,突出了对电池诊断技术的需求。AE可以将其信号与降解现象相关联,从而及时进行干预。一旦整合到电池管理系统中,它就可以提供早期警告并提高整体电池安全性和性能。这包括在异常事件(例如热量,4机械载荷,5-7和电气滥用)期间与其他测量值一起操作和测量AE参数。8年老化指标,例如绝对能量和累积命中,可以用作中间变量,以估计和预测电池的SOH。9
- 基础Linux SDK的 - 建立在行业标准框架之上的AI组件 - AI设备之间的简化迁移以获得所需的性能 - Edge AI Studio是评估的常见工具集
orcid IDS:MladenaLukićhttps://orcid.org/000000-0003-1105-3637 katarina https://orcid.org/0000-0002-4581-1048 Dragan Markushev https://orcid.org/0000-000-0002-0330-3600摘要。光声学光谱的发展是由对精确,有效和可靠的检测方法不断增长的需求驱动的,该方法可用于原位测量和实时监测。随着技术的快速进步,光声学光谱已成为一种超敏感,选择性,具有成本效益的技术,可以满足环境监测,工业安全和医学诊断的苛刻要求。本文强调了光声技术的持续改进,包括使用适当的激光源以及感应元素以及机器学习方法,正在推动气体的限制和扎实的分析,并提供了解决现代科学和工业挑战的关键工具。
量子力学改变了我们看待物理世界的方式。在过去的二十年里,物理系统的量子特征也成为不同技术分支的资源[1,2]。特别是当计量学遇到量子力学时,一系列新特征被用来提高物理测量的精度,并构想出新的量子增强协议来表征信号和设备[3-5]。相对论也改变了物理学的范式,并找到了相关的技术应用[6]。因此出现了一个问题:是否可以联合利用相对论和量子力学特征来提高物理测量的精度。在本文中,我们遵循这一想法并证明一个典型的相对论特征——引力时间膨胀,确实可以代表一种资源,它可以与量子叠加一起使用,以提高估计引力常数或其变化的精度。
即使实验被冷却至宇宙中最低的温度(约10 mk),并且使用Josephson参数放大器(JPA)来最大程度地减少噪声,但它们引入了基本噪声(SQL,标准量子量极限噪声)
1土壤与景观科学,分子与生命科学学院,科学与工程学院,科廷大学,GPO盒U1987,珀斯WA 6845,澳大利亚。2分子与生命科学学院,科廷大学,GPO盒U1987,珀斯WA 6845,澳大利亚。 3 Ecohealth Network,1330 Beacon St,Suite 355a,Brookline,MA 02446,美国4土壤科学,荷兰瓦格宁根大学。2分子与生命科学学院,科廷大学,GPO盒U1987,珀斯WA 6845,澳大利亚。3 Ecohealth Network,1330 Beacon St,Suite 355a,Brookline,MA 02446,美国4土壤科学,荷兰瓦格宁根大学。