压电 (PE) 型加速度计 PE 型加速度计响应施加到其压电陶瓷或晶体传感元件上的机械应力,产生高阻抗静电荷输出。由于其高电荷灵敏度,压电陶瓷在电荷和电压模式加速度计中得到广泛应用。石英被公认为所有压电材料中最稳定的材料,也常用于通用 ICP ® 加速度计、校准传递标准以及 PE 压力和力传感器。电荷输出系统已经问世约 40 年。PE 加速度计通过低噪声电缆与高输入阻抗电荷放大器一起工作,该放大器将电荷信号转换为可用的低阻抗电压信号以供采集。电荷放大器提供信号阻抗转换、标准化和增益/范围调整。选项可能包括滤波、速度和/或位移积分以及输入时间常数的调整,这决定了低频响应。现代电荷放大器采用更有效的低噪声电路设计,并可能包含简化的 LCD 显示器和数字控制。一些“双模”型号可同时使用 PE 和 ICP ®
1. 引言近年来,OLED 技术的巨大进步 [1,2,3] 和有机光伏 (OPV) 的迅猛发展证明了有机电子器件的工业和商业潜力。有报道称,体异质结设计中的经典有机光伏器件的效率接近 20%,而钙钛矿的效率甚至超过了这个值。这些里程碑式的进步使得此类发展如今既适用于小规模也适用于大规模应用 [4,5]。尽管如此,尽管最近电子器件和传感器取得了令人瞩目的进步,但下一代 OLED、太阳能电池和印刷电路(基于有机场效应晶体管 (OFET))的制造在寻找新型更高性能半导体、基板和封装材料、电介质和加工条件 [6–11] 等方面仍面临挑战。有机材料在 RF 范围内(即兆赫甚至更高频率)在空气中的稳定运行将支持许多能够与硅基 CMOS 电路竞争的新技术的开发 [8,12–18]。当这些新型电子元件与生物传感元件相结合时,将为开发一次性诊断和药物输送技术开辟可能性[19–29]。
由于响应特性相似,使用单个电阻半导体传感器监测和分类不同气体具有挑战性。分离的传感器阵列可用作电子鼻,但这种阵列结构庞大,制造工艺复杂。在此,我们轻松制造了一个基于边缘生长的 SnO 2 纳米线的气体传感器阵列,用于实时监测和分类多种气体。该阵列由四个传感器组成,设计在玻璃基板上。SnO 2 纳米线从电极边缘在芯片上生长,相互接触,并充当传感元件。这种方法比后合成技术更有优势,因为 SnO 2 纳米线直接从电极边缘生长,而不是在表面上生长。因此,通过在高生长温度下将 Sn 与 Pt 合金化可以避免对电极造成损坏。进一步检查了传感器阵列对不同气体的传感特性,包括甲醇、异丙醇、乙醇、氨、硫化氢和氢气。雷达图用于改善对不同气体的选择性检测并实现有效分类。© 2020 作者。由 Elsevier BV 代表河内越南国立大学提供出版服务。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
摘要。基于表面等离子体共振 (SPR) 现象的生物传感器已被开发出来,用于通过评估血细胞聚集指标来快速诊断脑胶质瘤复发。该装置具有两个光学通道,允许同时进行两项研究或允许将一个通道用作参考。这种方法通过减少外部因素的影响显著提高了生物传感器的灵敏度。光激发源是波长为 650 nm 的 ap 偏振半导体激光器。传感元件是折射率为 1.61 的 F1 光学玻璃板,溅射有铬 (5 nm) 和金 (45…50 nm) 层。研究结果确定了患者外周血细胞聚集水平与胶质瘤恶性程度之间的相关性。在健康个体组和 II-IV 级胶质瘤组之间存在统计学上显着差异 (p ≤ 0.05)。血液检测中SPR曲线位移的减小提示细胞聚集程度增加,细胞膜电荷减少,这种趋势随着胶质瘤恶性程度的增加而逐渐加剧,在IV级胶质瘤患者中达到最小值,提示细胞膜理化性质发生变化,细胞膜电荷减少。
首先,传感元件的差分电压信号通过多路复用器和放大器模块传输到 A/D 转换器模块 (ADC),在那里将其转换为具有 18 位分辨率的数字信号。然后,该数字化信号由 ASIC 的集成微控制器单元 (μC) 进行数学处理,以获得经过校准和温度补偿的输出信号。为此,μC 使用校正算法和单独的校正系数,这些校正系数在 AMS 5935 的工厂校准期间存储在 ASIC 的内存中。这可以对数字化压力信号进行传感器特定的校准和校正(即线性化和温度补偿)。温度补偿所需的温度信号在 ASIC 的温度参考模块中生成,并通过多路复用器传输到放大器,然后传输到 ADC,在那里它也被数字化。微控制器使用其校正算法计算当前校正和标准化的压力和温度测量数据(24 位压力值和 24 位温度值),然后将其写入 ASIC 的输出寄存器。可以通过传感器的数字 I2C / SPI 接口从输出寄存器读取压力和温度的标准化数字输出值。对于 I²C 通信,使用 PIN3 (SDA) 和 PIN4 (SCL);对于 SPI 通信,使用 PIN3 (MOSI)、PIN4 (SCLK)、PIN6 (MISO) 和 PIN8 (SS)。AMS 5935 的数字输出值(压力和温度)与电源电压不成比例。
描述 Honeywell Zephyr™ HAF 系列传感器提供数字接口,用于读取指定满量程流量和补偿温度范围内的气流。热隔离加热器和温度传感元件有助于这些传感器对空气或气体流量做出快速响应。Zephyr 传感器设计用于测量空气和其他非腐蚀性气体的质量流量。标准流量范围为 10 SLPM、15 SLPM、20 SLPM、50 SLPM、100 SLPM、200 SLPM 和 300 SLPM,可提供自定义流量范围。传感器经过完全校准,并通过板载专用集成电路 (ASIC) 进行温度补偿。HAF 系列 >10 SLPM 在校准温度范围 0°C 至 50°C [32°F 至 122°F] 内进行补偿。最先进的 ASIC 补偿提供数字 (I2C) 输出,响应时间为 1 毫秒。这些传感器采用热传递原理测量空气质量流量。它们由微桥微电子和微机电系统 (MEMS) 组成,带有沉积有铂和氮化硅薄膜的温度敏感电阻。MEMS 传感芯片位于精确且精心设计的气流通道中,可提供对流量的可重复响应。Zephyr 传感器为客户提供增强的可靠性、高精度、可重复的测量以及定制传感器选项以满足许多特定应用需求的能力。坚固的外壳与稳定的基板相结合,使这些产品极其坚固耐用。它们是按照 ISO 9001 标准设计和制造的。
描述 Honeywell Zephyr™ HAF 系列传感器提供数字接口,用于读取指定满量程流量和补偿温度范围内的气流。隔热加热器和温度传感元件可帮助这些传感器快速响应空气或气体流量。Zephyr 传感器设计用于测量空气和其他非腐蚀性气体的质量流量。标准流量范围为 10 SLPM、15 SLPM、20 SLPM、50 SLPM、100 SLPM、200 SLPM 和 300 SLPM,可提供自定义流量范围。这些传感器经过全面校准,并通过板载专用集成电路 (ASIC) 进行温度补偿。HAF 系列 >10 SLPM 在 0°C 至 50°C [32°F 至 122°F] 的校准温度范围内进行补偿。最先进的基于 ASIC 的补偿提供数字 (I2C) 输出,响应时间为 1 毫秒。这些传感器采用热传递原理测量空气质量流量。它们由微桥微电子和微机电系统 (MEMS) 组成,其中的温度敏感电阻沉积有铂和氮化硅薄膜。MEMS 传感芯片位于精确且精心设计的气流通道中,可对流量提供可重复的响应。Zephyr 传感器为客户提供增强的可靠性、高精度、可重复的测量以及定制传感器选项以满足许多特定应用需求的能力。坚固的外壳与稳定的基板相结合,使这些产品非常坚固。它们是根据 ISO 9001 标准设计和制造的。
描述 Honeywell Zephyr™ HAF 系列传感器提供数字接口,用于读取指定满量程流量和补偿温度范围内的气流。隔热加热器和温度传感元件可帮助这些传感器快速响应空气或气体流量。Zephyr 传感器设计用于测量空气和其他非腐蚀性气体的质量流量。标准流量范围为 10 SLPM、15 SLPM、20 SLPM、50 SLPM、100 SLPM、200 SLPM 和 300 SLPM,可提供自定义流量范围。这些传感器经过全面校准,并通过板载专用集成电路 (ASIC) 进行温度补偿。HAF 系列 >10 SLPM 在 0°C 至 50°C [32°F 至 122°F] 的校准温度范围内进行补偿。最先进的基于 ASIC 的补偿提供数字 (I2C) 输出,响应时间为 1 毫秒。这些传感器采用热传递原理测量空气质量流量。它们由微桥微电子和微机电系统 (MEMS) 组成,其中的温度敏感电阻沉积有铂和氮化硅薄膜。MEMS 传感芯片位于精确且精心设计的气流通道中,可对流量提供可重复的响应。Zephyr 传感器为客户提供增强的可靠性、高精度、可重复的测量以及定制传感器选项以满足许多特定应用需求的能力。坚固的外壳与稳定的基板相结合,使这些产品非常坚固。它们是根据 ISO 9001 标准设计和制造的。
描述 Honeywell Zephyr™ HAF 系列传感器提供数字接口,用于读取指定满量程流量和补偿温度范围内的气流。隔热加热器和温度传感元件可帮助这些传感器快速响应空气或气体流量。Zephyr 传感器设计用于测量空气和其他非腐蚀性气体的质量流量。标准流量范围为 10 SLPM、15 SLPM、20 SLPM、50 SLPM、100 SLPM、200 SLPM 和 300 SLPM,可提供自定义流量范围。这些传感器经过全面校准,并通过板载专用集成电路 (ASIC) 进行温度补偿。HAF 系列 >10 SLPM 在 0°C 至 50°C [32°F 至 122°F] 的校准温度范围内进行补偿。最先进的基于 ASIC 的补偿提供数字 (I2C) 输出,响应时间为 1 毫秒。这些传感器采用热传递原理测量空气质量流量。它们由微桥微电子和微机电系统 (MEMS) 组成,其中的温度敏感电阻沉积有铂和氮化硅薄膜。MEMS 传感芯片位于精确且精心设计的气流通道中,可对流量提供可重复的响应。Zephyr 传感器为客户提供增强的可靠性、高精度、可重复的测量以及定制传感器选项以满足许多特定应用需求的能力。坚固的外壳与稳定的基板相结合,使这些产品非常坚固。它们是根据 ISO 9001 标准设计和制造的。
(a):本土医疗技术的主要特点和潜在应用:(i) 用于前列腺癌检测的脱氧核糖核酸 (DNA) 适体:适体是可以与特定靶标(例如蛋白质、碳水化合物甚至活细胞)以高亲和力结合的小分子。适体在癌症中的作用:在癌细胞中,某些特定于癌症类型的蛋白质的含量与正常细胞相比异常高。这些蛋白质可用于识别癌细胞的存在、它们在体内的定位以及癌症治疗。由于适体可以与特定靶标(例如蛋白质、碳水化合物甚至活细胞)以高亲和力结合,因此它们可用于靶向癌细胞表面的这种特定蛋白质。IITD 的贡献:印度理工学院德里分校的研究人员已经制造出 DNA 适体来靶向前列腺癌细胞表面的蛋白质。由于其尺寸小(2 纳米)、对特定配体/结合剂的高亲和力和稳定性,它可以作为生物传感器的出色传感元件。潜在应用:除了检测之外,印度理工学院德里分校制造的 DNA 适体还可以用于治疗前列腺癌细胞。为此,制造的适体已与用于治疗前列腺癌的药物结合。由于尺寸小(约为抗体的五分之一),适体作为光子生物传感器设备的传感层具有额外的优势;并且可以作为药物输送剂。