描述 Honeywell Zephyr™ HAF 系列传感器提供数字接口,用于读取指定满量程流量和补偿温度范围内的气流。隔热加热器和温度传感元件可帮助这些传感器快速响应空气或气体流量。Zephyr 传感器设计用于测量空气和其他非腐蚀性气体的质量流量。标准流量范围为 10 SLPM、15 SLPM、20 SLPM、50 SLPM、100 SLPM、200 SLPM 和 300 SLPM,可提供自定义流量范围。这些传感器经过全面校准,并通过板载专用集成电路 (ASIC) 进行温度补偿。HAF 系列 >10 SLPM 在 0°C 至 50°C [32°F 至 122°F] 的校准温度范围内进行补偿。最先进的基于 ASIC 的补偿提供数字 (I2C) 输出,响应时间为 1 毫秒。这些传感器采用热传递原理测量空气质量流量。它们由微桥微电子和微机电系统 (MEMS) 组成,其中的温度敏感电阻沉积有铂和氮化硅薄膜。MEMS 传感芯片位于精确且精心设计的气流通道中,可对流量提供可重复的响应。Zephyr 传感器为客户提供增强的可靠性、高精度、可重复的测量以及定制传感器选项以满足许多特定应用需求的能力。坚固的外壳与稳定的基板相结合,使这些产品非常坚固。它们是根据 ISO 9001 标准设计和制造的。
首先,传感元件的差分电压信号通过多路复用器和放大器模块传输到 A/D 转换器模块 (ADC),在那里将其转换为具有 18 位分辨率的数字信号。然后,该数字化信号由 ASIC 的集成微控制器单元 (μC) 进行数学处理,以获得经过校准和温度补偿的输出信号。为此,μC 使用校正算法和单独的校正系数,这些校正系数在 AMS 5935 的工厂校准期间存储在 ASIC 的内存中。这可以对数字化压力信号进行传感器特定的校准和校正(即线性化和温度补偿)。温度补偿所需的温度信号在 ASIC 的温度参考模块中生成,并通过多路复用器传输到放大器,然后传输到 ADC,在那里它也被数字化。使用其校正算法,微控制器计算当前校正和标准化的压力和温度测量数据(24 位压力值和 24 位温度值),这些数据被写入 ASIC 的输出寄存器。可以通过传感器的数字 I 2 C / SPI 接口从输出寄存器读取压力和温度的标准化数字输出值。对于 I²C 通信,使用 PIN3 (SDA) 和 PIN4 (SCL),对于 SPI 通信,使用 PIN3 (MOSI)、PIN4 (SCLK)、PIN6 (MISO) 和 PIN8 (SS)。AMS 5935 的数字输出值(压力和温度)与电源电压不成比例。
通讯作者:sabrina.hayati@univra.ac.id*摘要。生物传感器是分析设备,将生物传感元件与理化探测器相结合,为医学诊断提供快速,准确且具有成本效益的解决方案。在全球范围内,这些设备彻底改变了对疾病的检测和监测,从而显着影响患者的结局。在印度尼西亚,生物传感器技术的采用和开发在过去十年中加速了,特别是为了应对日益增长的医疗保健需求和政府的推动技术创新。本研究旨在审查和分析2014年至2024年之间印度尼西亚医学诊断部门的生物传感器的开发和应用。该研究的重点是确定关键的技术进步,将生物传感器整合到医疗保健中,开发和部署面临的挑战以及未来增长的前景。该研究采用了与印度尼西亚生物传感器技术有关的科学出版物,行业报告和政府文件的全面文献综述和分析。评论涵盖了生物传感材料的演变,护理点测试应用,与数字健康技术的集成以及监管框架。数据被合成,以详细概述生物传感器技术的现状及其对印度尼西亚医学诊断的影响。然而,该行业面临挑战,包括技术局限性,监管障碍和经济限制,这减慢了在临床环境中生物传感器的广泛采用。1。这些发现表明,生物传感器技术的显着进步,尤其是在新型纳米材料的开发中,生物传感器与移动健康平台(MHealth)平台的整合以及用于感染性疾病的服务点测试(POCT)的扩展。尽管面临这些挑战,但印度尼西亚生物传感器的未来似乎很有希望,预计不断的投资和创新将推动这一领域的进一步发展。关键字:生物传感器,医学诊断,印度尼西亚,护理点测试,医疗技术。简介
1)模拟输出信号(仅限压力测量)与电源电压的比率为比例。2)完整的跨度输出(FSO)是指定的最大压力下输出信号与指定最小压力下的输出信号之间的代数差(请参见表1和表2)。3)数字输出压力信号与电源电压的比率不计。4)数字输出温度信号与电源电压的比率不计。温度值是在传感器的压电传感元件处测量的,是传感器温度(包括自加热)。5)总准确度定义为在%FSO中的理想特征曲线(RT)中的理想特征曲线的最大偏差,包括调整误差(偏移和跨度),非线性,压力滞后和重复性。非线性是整个压力范围内最佳拟合直线(BFSL)的测量偏差。压力滞后是当该压力循环到最小或最大额定压力时,在指定范围内的任何压力下输出值的最大偏差。可重复性是在10个压力循环后指定范围内的任何压力下输出值的最大偏差。6)TEB(总误差频段或整体误差)定义为在整个温度范围内(-25…85°C)的理想特征曲线与理想特征曲线的最大偏差。7)用于4-20 MA Current -Loop应用程序,可提供3.5 mA电流消耗的自定义版本。8)压力端口1的介质兼容性(有关端口1的描述,请参见图5和图6):干净,干燥的气体,非腐蚀性至硅,RTV硅胶橡胶,金,镀镍钢(碱性或酸性液体)可能会破坏传感器)。9)压力端口2的介质兼容性(有关端口2的描述,请参见图5和图6):流体和气体非腐蚀性易腐烂,PYREX,RTV硅胶橡胶,镀镍钢。
通过推杆将温度传感器连接到传感器。该测试的精度低于干涉测量法,并且该测试通常适用于 CTE 高于 5 × 10 –6 /K (2.8 × 10 –6 /°F) 的材料,温度范围为 –180 至 900 °C (–290 至 1650 °F)。推杆可以是玻璃硅类型、高纯度氧化铝类型或各向同性石墨类型。氧化铝系统可将温度范围扩展到 1600 °C (2900 °F),石墨系统可将温度范围扩展到 2500 °C (4500 °F)。ASTM 测试方法 E 228(参考文献 2)涵盖使用玻璃硅推杆或管膨胀仪测定刚性固体材料的线性热膨胀。干涉测量法。使用光学干涉技术,样品端部的位移是根据单色光的波长数来测量的。精度明显高于膨胀仪,但由于该技术依赖于样品表面的光反射率,因此在 700 °C (1290 °F) 以上时,干涉测量法的使用并不多。ASTM 测试方法 E 289(参考文献 3)提供了一种使用干涉法测量刚性固体线性热膨胀的标准方法,该方法适用于 –150 至 700 °C(–240 至 1290 °F)的温度,更适用于 CTE 较低或为负值且范围小于 5 × 10 –6 /K(2.8 × 10 –6 /°F)的材料,或只有有限长度厚度的其他高膨胀系数材料。热机械分析测量由热机械分析仪进行,该分析仪由试样支架和探头组成,探头将长度变化传输到传感器,传感器将探头的运动转换为电信号。该设备还包括一个用于均匀加热的炉子、一个温度传感元件、卡尺和一个记录结果的工具。ASTM 测试方法 E 831(参考文献 4)描述了通过热机械分析对固体材料进行线性热膨胀的标准测试方法。该方法的 CTE 下限为 5 × 10 –6 /K (2.8 × 10 –6 / ° F),但可以在较低或负膨胀水平下使用,但准确度和精度会降低。适用温度范围为 –120
标题:迈向多光谱红外成像 演讲者姓名:Elahe Zakizade 博士 公司名称/研究所:弗劳恩霍夫微电子电路与系统研究所 项目名称:Eurostars SPEKTIR 资助小组:Eurostars 摘要是否可以在网站上发表: ☒ 是 ☐ 否 提供最多 500 字的摘要。使用 ARIAL 字体,11 号。如果使用图表,文本和图表必须保持在这一页内。 近年来,热成像相机市场不断增长。主要驱动因素是基于微测辐射热计技术的非制冷红外焦平面阵列 (IRFPA),因为它们是低成本成像仪,不需要额外的复杂和昂贵的冷却系统。大多数当前的热成像应用都基于长波红外 (LWIR) 辐射的检测,波长覆盖从 8 μm 到 14 μm,对人体温度敏感,不仅可用于军事应用,而且在智能手机、监控摄像头或自动驾驶汽车等大众市场应用中也越来越受欢迎。此外,非制冷热像仪在波长范围为 3 μm 至 5 μm 的中波红外 (MWIR) 中也能敏感。MWIR 传感器可用于监测温度高达几百摄氏度的“热源”、检测危险或易燃气体或环境监测等应用。红外区域多光谱成像的实现引起了广泛关注,因为它能够可视化和组合来自 MWIR 和 LWIR 区域的信息。微测辐射热计作为非制冷 IRFPA 的传感元件,采用热原理运行。它们是独立的隔热传感器膜。它们吸收红外辐射并将其转化为温度上升。微测辐射热计膜的温度变化会导致电阻随入射功率的变化而变化。CMOS 读出电路将微测辐射热计随温度变化的电阻变化转换为数字值并生成图像。实现多光谱吸收的一种有前途的方法是使用等离子体超材料吸收器 (PMA)。在过去的几十年中,等离子体领域因其各种潜在应用而备受关注,尤其是在可见光谱范围内。等离子体结构的研究也已扩展到红外区域,以实现高吸收率并调整中波红外和长波红外光谱区域的吸收波长。实现适用于弗劳恩霍夫 IMS 微测辐射热计技术的合适吸收器的有希望的候选材料是金属-绝缘体-金属 (MIM) 结构,该结构由上部周期性金属结构、中间介电层和下部金属反射层组成,以在所需的吸收波长下产生强局部表面等离子体共振。材料选择,弗劳恩霍夫 IMS 研究了沉积技术和图案化工艺,以实现高灵敏度的多光谱热成像。弗劳恩霍夫 IMS 将报告其在实现多光谱红外成像方面取得的进展。它将展示用于多光谱红外成像的带有等离子体超材料吸收器的微测辐射热计的最新模拟结果和实验表征。
生物传感器由于其众多好处,包括低成本,快速响应和高灵敏度,变得越来越有价值。要开发创新的生物传感器,除了常规专业之外,还需要跨学科的工作。本文提供了生物传感器的概述,并探讨了其工作原理和应用程序。生物传感器通过产生与分析物的吸收成正比的信号来测量生物学或化学反应。“生物传感器”一词是“生物”和“传感器”的组合。它由换能器和生物元素(例如酶或抗体)组成,该酶或抗体与分析物相互作用并产生电信号。生物传感器用于各种应用,包括疾病监测,药物发现,污染物检测等。生物传感器的设计通常包括分析物,生物感受器,换能器,电子设备和显示等组件。生物传感器使用信号转导将生物学变化作为电信号,结合了传感器和生物传感元件。这包括具有信号调节单元(SCU),微控制器/处理器和显示单元的电子电路。生物传感器分类为诸如在声音振动原理上工作的压电传感器等类型,并在机械施加时会产生电信号。这些传感器将机械振动更改为比例电信号。另一种类型是电化学传感器,它们在探测面上覆盖着生物分子,响应检测到的化合物并产生电信号。电化学传感器使用不同的传感器,例如安培,障碍物和电位计量学,将化学数据更改为可测量的信号。光学生物传感器涉及光纤,这些光纤检测基于吸收,散射或荧光等光特性的传感元件。这些传感器使用抗体,抗原,核酸,受体,组织和全细胞等生物学材料产生与分析物浓度成比例的信号。光学生物传感器提供实时,无标签和直接检测具有益处,较小的成本,敏感性和高特异性的化学和生物学物质。高级概念,例如微电子,MEMS,分子生物学,纳米或微技术,生物技术和化学,用于实施新的光学生物传感器。此外,生物传感器可以与微控制器连接,以监测由化学变化或不当储存条件引起的食物污染。使用生物传感器来监测食品质量并预防食物传播疾病食物传播疾病是由病毒和细菌引起的,导致几种类型的食物传播疾病。为了防止这种情况,必须设计系统以识别食品质量和新鲜度。该系统利用电气传感器和生物传感器,生物传感器在检测食品样品中的细菌污染中起关键作用。系统使用湿度,温度和光传感器等传感器监视食物。高温可以增加食物变质的风险,而高湿度水平可能会影响某些类型的食物的质量。食物阈值值设置为确定何时宠坏食物,考虑到湿度,温度和光线等因素。光在保存食物质量方面起着至关重要的作用,因为光线不足会导致变质。该系统还检查了从食物中发出的气体以检测变质的水平。使用气体传感器测量气体水平的数量,并转换为模拟值以在物联网平台上显示。所提出的系统由几个组件组成,包括电源单元(PSU),Wi-Fi调制解调器,Arduino微控制器,光依赖性电阻器(LDR),气体传感器,数字温度和湿度传感器(DTH11)和液晶显示器(LCDS)。Arduino Uno板使用带有14个数字I/O引脚,6个PWM输出和6个模拟输入的Microchip Atmega328p微控制器。该系统利用物联网来监视影响食物存储的环境因素,从而实现任何设备的实时数据传输。ESP8266模块连接到Arduino板和Wi-Fi路由器,在字符LCD上显示传感器数据。传感器测量温度(0-50°C)和相对湿度(20-95%),每两秒钟将数据传输到Internet。系统将传感器数据收集并将其转换为字符串,然后将其显示在LCD上。生物传感器的特征包括选择性,可重复性,稳定性,灵敏度和线性性。选择性使其可以在污染物中感知特定的分析物。可重现性可确保重复实验中的一致响应。线性表示响应直线信号的精度。稳定性受环境因素的影响,而灵敏度决定了检测到的分析物的最小量。生物传感器提供了快速,连续的测量,校准的最小试剂要求,快速响应时间以及检测非极性分子的能力。它可以通过将生物学信号转换为电子测量来检测人体内部危险的生物学剂或化学物质。这项技术负担得起,精确,小,生物相容性和可靠。但是,生物传感器的局限性,包括对某些目标的敏感性相对较差,提供了半定量或定性结果。增强检测极限需要进一步发展。放大生物信号的努力集中在增强其力量上。生物传感器的应用包括医疗测试,检测病原体以及通过追踪气体或污染物来监测水质。它们也用于生物浮雕技术,安全系统以及跟踪人体中的葡萄糖水平。此外,在农业和生物技术中应用生物传感器连续监测化学特性。在食品工业中,他们检测抗生素,农药,维生素和脂肪酸的水平。生物传感器是生物分析系统,通过将其信号转换为可计算的响应来识别生物样品。这些传感器是可以分析生物样品以识别其结构,组成和功能的强大设备。他们通过将生物信号转换为电响应来做到这一点。生物识别传感器是[插入定义或链接]。在医学和健康领域,生物传感器在检测生物学信号中发挥了重要作用。本教程将探讨生物传感器的概念,其工作原理,不同类型和常见应用。更深入研究之前,让我们回顾一下传感器的基础知识。传感器是一种检测体温或光强度等物理量变化并将其转换为可测量数量的设备。例如,根据环境光强度,光依赖性电阻(LDR)改变其电阻。同样,生物传感器将生物信号转换为电信号。本质上,生物传感器是一种分析装置,可检测生物学过程的变化并将其转化为电信号。在我们通过本教程前进时,必须了解生物信号的概念。生物传感器将生物传感元件与换能器结合在一起,以将数据转换为电信号。该系统由带有信号调节单元,处理器或微控制器的电子电路和显示单元组成。简化的框图显示了重要组件,包括用于信号调节的放大器和过滤器。生物传感器的原理涉及使用酶作为生物材料。一种电酶方法将酶通过换能器转化为电信号,通常通过氧化酶。此过程改变了生物材料的pH,影响了与测得的酶有关的酶的当前承载能力。传感器的输出是一个电信号,可以是电流或电压,具体取决于所使用的酶的类型。如果是电流,则需要使用基于操作AMP的转换器将其转换为等效电压。然后将所得的电压信号放大并通过低通RC滤波器过滤,以删除高频噪声。输出模拟信号表示要测量的生物学数量,可以直接显示或传递给微控制器进行数字转换。生物传感器的一个常见示例是糖仪,它通过在测试带上收集样品并将其转换为电信号来测量血糖水平。为了分析葡萄糖水平,传感器使用电酶方法,其中葡萄糖的氧化发生在含有触发和参考电极的测试带上。应用血液时,化学反应会产生与葡萄糖浓度成比例的电流。血糖仪具有处理器,转换器,放大器,过滤器和显示单元。生物传感器分为两组:用于实施分析或转导方法中的生物元素。常见的生物学元素包括DNA,酶,抗体,微生物,组织和细胞受体。生物传感器也可以根据所使用的转导类型进行分类:基于质量的,光学和电化学。基于质量的生物传感器包括压电生物传感器,它们将机械振动转换为电信号。生物分子附着在压电传感器的表面上。电化学生物传感器使用探测表面,其感应分子反应产生与测量量成比例的电信号。可以使用各种换能器,例如电位测量,安培计量学和受损。光学生物传感器利用光纤来检测由于折射率变化而引起的光吸收,散射或荧光等光特性的变化。例如,与金属层结合的抗体会导致培养基折射率的变化。注意:原始文本已维护,并且没有对其内容进行重大更改。光学生物传感器具有非电信性质,使它们能够通过改变光波长在单层上分析多个元素。生物传感器在1950年代初期开发以来,生物传感器在医学,临床分析和健康监测方面至关重要。他们提供了比基于实验室的设备的几个优点:尺寸小,低成本,快速效果和易用性。生物传感器还发现了在工业加工,农业,食品加工,污染控制等领域的应用。关键领域包括医学,临床诊断,环境监测,工业过程,食品工业和农业实践。在医学和诊断中,生物传感器用于监测葡萄糖水平和乳酸,商业生物传感器在自我监测的血糖中流行。这些设备提供未稀释的样品,以获得准确的结果和可重复使用的传感器,以改善患者护理。通过监测细菌和细胞培养,这有助于最大程度地降低成本和风险。环境监测是生物传感器的另一个重要应用,尤其是在水污染检测中具有很大优势。生物传感器可以检测硝酸盐和磷酸盐,有助于对抗地下水污染并确保安全的饮用水质量。在工业应用中,生物传感器用于监测乳制品,酒精生产和类似行业的发酵过程。食品工业还利用生物传感器来测量碳水化合物,酸,酒精和其他物质来控制食品质量。一些常见的例子包括葡萄酒,啤酒,酸奶,软饮料等。最后,农业在各种实践中使用生物传感器,例如作物管理,土壤分析和动物健康监测。农药通常是农业环境中的重要工具,主要用于检测其存在。