技术视角:大多数提高燃气工艺加热器对流段传热率的方法都涉及加入翅片、挡板、湍流器等。以增加传热表面积或湍流或两者。虽然这些方法可以有效提高传热率,但这种提高总是伴随着对流段压降的增加,以及对于燃烧“脏”燃料混合物的加热器而言,管道结垢的增加——这两者都是非常不受欢迎的。GTI 已经确定了一种方法,它可以提高传热率,而不会显著增加压降或结垢率。与其他类型的传热增强方法相比,所提出的凹坑管方法在最低的压降下实现了非常高的传热率。将这种方法纳入化学工业燃烧工艺加热器的对流部分可提高能源效率 3-5%。
在热工程中,传热是一个重要的领域,主要研究不同系统之间热能或热量的产生、使用、转换和交换。传热分为多种机制,例如辐射、对流、热传导和相变期间的能量传递。节能、材料可持续性、热调节和系统紧凑性都取决于有效的热传输。由于技术进步和工业流程的优化,对更高效的热交换系统的需求日益增长。微电子、电力电子、核能、空调、交通运输、航空航天、可再生能源、化学工程和其他工业流程只是使用传热的众多行业中的一小部分。提高传热率主要采用三种策略:被动、主动和组合策略。
太阳能收集器和工作流体之间的对流和导电热传递使光热性能有限,并导致从传统吸收剂表面到周围环境的热量损失较高。直接吸收太阳能收集器(DASC)是改进光热性能的有利替代方法。在这项研究中,使用TRNSYS进行了基于纳米结构太阳能收集器的性能的模拟。在这项研究中,通过使用纳米流体和三种不同的纳米结构材料CUO,GO和ZnO,可以改善来自直接太阳能收集器的结缔组织和导电热传递。分析确定了通过直接太阳能收集器的工作流体的出口温度。TRNSYS模型由拉合尔市的直接太阳能收集器和天气模型组成,整整一年进行了1,440小时。使用UV-VIS分光光度计研究了水中这些纳米结构材料的稳定性。确定了直接太阳能收集器的各种性能参数,例如出口收集器温度和传热速率的变化。通过实验结果验证了数值模型。对于基于GO的纳米流体,观察到63°C的最高出口温度。模拟结果表明,全年,纳米流体改善了直接太阳能收集器的性能。与水相比,基于CUO,ZnO的纳米结构的纳米液体观察到23.52、21.11和15.09%的传热率的显着提高,与水相比分别进行。这些纳米结构材料在太阳能驱动的应用中是有益的,例如太阳能脱盐,太阳能水和空间加热。
• 发表日期 / 收讫日期:2021 年 4 月 6 日 • 修改发表日期 / 修改后收讫日期:2021 年 10 月 22 日 • 喀布尔日期 / 接受日期:2021 年 11 月 1 日 摘要 电子元件最关键的问题是功耗高、寿命短。本文旨在对水冷散热器的工作过程进行数值模拟,以获得最有效的设计。在此背景下,设计了四种具有不同通道(A 型、B 型、C 型、D 型)的配置,水速分别为 0.25 m/s、0.5 m/s 和 1 m/s,空气速度恒定(6 m/s),以模拟流体流动和传热。结果以温度和压力云图、速度流线图以及压力差、出口温度、温差、空气传热速率和功耗与雷诺数的关系图来评估。结果表明,在所有分析中,压力差、出口温度、功耗和空气传热速率都随着雷诺数的增加而增加。在所有配置中,水出口温度彼此非常接近,Re=2500 时在 63-65 °C 范围内,Re=5000 时在 70-72 °C 范围内,Re=10000 时在 74-76 °C 范围内。在所有配置中,A 型出口温度最低,Re=2500 时为 63.40 °C,Re=5000 时为 70.77 °C,Re=10000 时为 74.85 °C。此外,A 型在空气传热率方面表现出优于其他模型的性能,Re=2500 时该值为 1346 W,Re=5000 时该值为 1500 W,Re=10000 时该值为 1675 W。A 型几何结构中获得的最大压力差接近 3500 Pa,雷诺数值为 10000。在全面评估结果时,得出结论:B 型在传热、泵功率和进出口位置方面是最适合使用的模型。关键词:电子冷却、散热器、液体冷却、数值建模 Öz Elektronik bileşenlerin en önemli sorunları、yüksek güç tüketimi ve kısa ömürdür。但是,您可以通过使用 olarak 模型来解决这个问题。 Bu kapsamda akış ve ısı Transferini simüle etmek için suyun 0.25 m/s, 0.5 m/s ve 1 m/s hızlarında ve sabit hava hızında (6 m/s) farklı geçişlere sahip dört farklı geometri (Tip-A, Tip-B, Tip-C, Tip-D) dizayn edilmiştir。声音、基本关系、基本关系、基本关系、基本关系、基本关系、哈瓦亚奥兰的转移和雷诺兹的图像olarak değerlendirilmiştir。雷诺兹 (Reynolds) 的分析表明,他的艺术作品是从根本上发展起来的,并且是在不断发展的,因此,他将自己的作品传给了艺术大师。 Tüm modellerde suyun çıkış sıcaklıkları birbirine çok yakın olup Re=2500 için 63-65 °C, Re=5000 için 70-72 °C ve Re=10000 için 74-76 °C aralığındadır。 Tüm modeller arasında Re=2500 için 63.40 °C,Re=5000 için 70。A型出口温度最低,Re=10000时为77℃,为74.85℃。此外,Type-A 在向空气传递热量方面表现出比其他型号更好的性能,Re=2500 时为 1346 W,Re=5000 时为 1500 W,Re=10000 时为 1675 W。在 A 型几何结构中获得的最大压差为,雷诺数为 10,000 时压差约为 3500 Pa。对结果进行整体评估后,得出结论:从传热、泵功率和进出口位置来看,B型是最适合使用的模型。关键词:电子冷却,散热器,液体冷却,数值建模