为了模拟原位 Z TH,ja 提取,对安装在 PM 上的其中一个设备采用了“模拟实验”策略。该过程如下:•首先,通过 COMSOL Multiphysics 环境中的详细纯热 3-D FEM 模拟获得设备的参考 Z TH,ja [24],其中重现了 PM 的精确复制品(图 3)。边界条件通过施加于厚铜底板底面的传热系数 h =2×10 3 W/m 2 K 来解释,这描述了与高效散热器的接触 [25]。•获得的参考 Z TH,ja 用于构建具有 Foster 拓扑的 SPICE 兼容热反馈网络 (TFN) [26];然后将 TFN 耦合到 VDMOS 晶体管的电气模型,该晶体管的温度敏感参数可以在模拟运行期间发生变化。电气模型根据实验数据 [27] 进行了校准,并在 [28] 中进行了详细描述。• 使用 OrCAD Capture 软件包 [29] 对 ET 模型进行了瞬态模拟,以模拟第 II.B 节中介绍的实验程序来提取 z ja 。• 通过在 COMSOL 中模拟 300 K 等温背面的裸片器件来确定 Z jc 。• 然后进行反归一化过程和时域转换以获得热阻抗 Z TH,ja 。• 最后比较了参考值和提取的 Z TH,ja 。
许多研究人员已经在使用敏感材料来提高太阳能蒸馏器的性能,但只有少数研究人员使用铁砂作为单盆太阳能蒸馏器中的吸热器来提高性能,正如本实验所证明的那样。这项研究是在 2018 年 8 月至 9 月期间进行的,使用了四个太阳能蒸馏器,尺寸为 420 毫米 × 305 毫米,盖子的坡度为 30 度。其中三个太阳能蒸馏器中含有 20 毫米高的铁砂。三个太阳能蒸馏器中的水位分别为 15 毫米(V1)、20 毫米(V2)和 25 毫米(V3),这样水面分别为:低于铁砂表面、与铁砂表面相同水平和高于铁砂表面。第四个太阳能蒸馏器仅装有 20 毫米(P)的水,是其他蒸馏器的基准。从结果中,我们推断铁砂吸收的热量提高了太阳能蒸馏器内部的总传热系数。这一结果与太阳能蒸馏器的火用和总效率一致。结果表明,通过增加 V1、V2 和 V3 相对于 P 产生的淡水分别为 1.5%、51.8% 和 57.1%。因此,我们得出结论,铁砂显著提高了太阳能蒸馏器的生产率。当水面高于铁砂表面时,效果最佳。关键词:海水淡化;太阳能蒸馏器;铁砂,多孔介质版权所有 © 2020 PENERBIT AKADEMIA BARU - 保留所有权利
金属增材制造 (AM) 为众多应用中优化设备的开发提供了无与伦比的设计自由度。使用 AlSi10Mg 等非传统铝合金的要求使得金属增材制造的合理微/纳米结构化具有挑战性。本文开发了相关技术,并研究了控制最常见金属增材制造材料 AlSi10Mg 微/纳米结构化的基本机制。合理设计了一种表面结构化技术,以形成以前未探索过的双层纳米级结构,从而实现极低的粘附性、出色的抗冷凝洪水能力和增强的液气相变。使用冷凝作为演示框架,结果表明,与最佳薄膜冷凝相比,双层纳米结构的传热系数高出 6 倍。研究表明,AM 纳米结构最适合限制液滴,同时减少粘附性以促进液滴分离。通过与过去报告的数据进行广泛的对比,我们发现,在高过饱和条件下,使用传统铝无法实现所展示的传热增强效果,这进一步激发了对 AM 纳米结构的需求。最后,事实证明,广泛的 AM 设计自由度与最佳 AM 纳米结构方法的协同组合可以提供具有出色热性能和功率密度的超紧凑冷凝器。
1-D PCM 棒的横截面积,[m 2 ] 比热,[J kgK ⁄ ] 运行成本,[$ yr ⁄ ] 电价,[$ kWhr ⁄ ] 管材成本,[$ kg ⁄ ] PCM 材料成本,[$ kg ⁄ ] 管内传热系数,[W m 2 K ⁄ ] 总时间步数 电导率,[W mK ⁄ ] 管总长度,[m ] 平准化能源成本,[$ MWh ⁄ ] PCM 潜能,[kJ kg ⁄ ] 径向网格数 管长网格数 努塞尔特数 普朗特数 传热速率,[W] 传热速率,[W] HTF 总质量流速,[kg s ⁄ ] 环内半径,[m] 环状几何中的移动凝固前沿,[m]环形圆柱体 PCM 的热阻,[ m ] 圆柱体 PCM 内的热阻,[ KW ⁄ ] 导热流体内的热阻,[ KW ⁄ ] 雷诺数 温度,[ ℃ ] 边界冷却温度,[ ℃ ] 相变材料熔化温度,[ ℃ ] 管与圆柱体 PCM 之间的界面温度,[ ℃ ] 管内导热流体的速度,[ ms ⁄ ] 管壁厚度,[ mm ] 壳体厚度,[ mm ] 一维 PCM 棒的长度,[ m ] 每天运行小时数,[ hr ] 凝固时间,[ hr ] 移动凝固前沿,[ m ] 设备总寿命,[ yr ] 环形圆柱体 PCM 的轴长,[ m ] 两个坐标系之间的凝固前沿比率 密度,[ kg m 3 ⁄ ] 粘度,[ Pa ∙s ] 潜能储存系统的有效性矩形几何结构显热能分数因子 圆柱形几何结构显热能分数因子 差值或增量步长 泵效率
电动汽车在很大程度上依靠可充电电池单元进行储能。空气冷却具有简单的设计和高可靠性,仍然是控制电池温度的有效方法。但是,由于空气的热容量有限,其热性能很差。为了提高传热系数,同时还可以最大程度地减少成本,这项研究采用了21,700个缸形电池电池模块的各种细胞构型,包括带有纵向气流的冷却鳍。使用有限体积方法模拟质量连续性,动量和能量保护方程式,对各种雷诺数(1,679≤RE≤33,588)进行了三维数值模拟(1,679≤RE≤33,588)。结果表明,具有纵向空气冷却的层流循环系统可以在低排放电流(≤1.0c)的最佳操作条件下维持电池(≤1.0c),即使在周围30°C的周围温度下,螺旋长度通过螺旋长度降低了50%,并改变其位置并更改其位置(即,均位置的位置,均位置为0.95,in 0.95 c. coce in 0.95 c. coce in 0.95; 48.7°C.将螺旋鳍环路从1到五个将最大t的最大值降低了7.4%,最大δT最大降低了29.8%。超过五个螺旋回路,随着δT最大的增加,模型的温度一致性会恶化。多项式方程,以估计电池在各种排放电流下电池模块的某些热性能。
A c 横截面积,[ m 2 ] A s , A h 总传热面积,[ m 2 ] β 表面密度,[ m 2 /m 3 ] 或整体压力梯度,[ Pa/m ] C p 恒压比热,[ J/ ( kgK )] Co 库仑数 d h 水力直径,[ m ] δ 翅片厚度,[ m ] ϵ 热交换器效率或湍流耗散,[ s ] 或翅片间距比 f c 核心摩擦系数 f 扇形 扇形摩擦系数 f 频率,[ Hz ] 或 Forschheimer 摩擦系数 G 质量流速,˙ m/A c , [ kg/ ( m 2 s )] γ 波纹间距比 h 对流膜系数 [ W/ ( m 2 K )] h f 压力损失,[ m ] η 0 , η f二次传热表面的有效性 j 科尔本系数 K c 入口损失系数 K e 出口损失系数 k 湍流动能,[ J/kg ] 或材料的热导率,[ W/ ( mK )] L , l 长度或翅片长度,[ m ] LMTD 对数平均温差,[ K ] M 马赫数 ˙ m 质量流量,[ kg/s ] µ 动态粘度,[ Pa · s ] N st 斯坦顿数 Nu 努塞尔特数 ν 运动粘度,[ m 2 /s ] P 周长,[ m ] 或流体压力,[ Pa ] Pr 普朗特数 Re 雷诺数 ρ 密度,[ kg/m 3 ] Q 或 ˙ Q 传递的热量,[ W ] Q 平衡 热交换器流之间的热平衡 Q 热 热交换器热侧发出的热量,[ W ] Q 冷热交换器的冷侧,[ W ] φ 流动面积与面面积之比或标准偏差 T 温度,[ K ] U 总传热系数 [ W/ ( m 2 K
射流冲击冷却被视为高功率电子设备热管理的绝佳选择。然而,它的缺点是高压降损失和远离射流区域的低局部传热系数。尽管据报道回流区是由于夹带而出现的,但是回流尺寸对热行为的影响尚不清楚。在这里,在数值研究中采用带有收敛环形通道的射流冲击散热器,以最大限度地减少微通道中冲击射流带来的不利冷却影响。可实现的 k − ε 湍流模型用于模拟热场和湍流流场(Re = 5,000 至 25,000)。研究发现,小尺度上不同的流动回流区是增强传热速率的原因。虽然在 Re 数较低时,收敛壁面射流冲击散热器的热性能高于其平板壁面散热器,但在 Re 数较高时,热性能结果有利于平板壁面射流冲击散热器。在 Re 数较高时,收敛通道中的流动再循环面积会缩小,因此与平板壁面射流散热器相比,收敛通道的热性能会下降。此外,研究发现,采用更陡的收敛通道会缩小流动再循环区域,导致 Re = 25,000 时压降降低高达 59%。本研究考察了不同 Re 数下流动再循环对射流冲击收敛环形散热器热工水力性能的影响。
微通道散热器 (MCHS) 能够通过液体到蒸汽的相变去除极高的热通量,使其适用于各种应用,包括高功率微电子的热管理。然而,随着蒸汽气泡的增大,微通道堵塞会导致流动沸腾不稳定性,阻碍了它们的商业适用性。本研究填补了文献中关于微通道深度对流动沸腾不稳定性的影响的研究空白,包括加热表面温度和压降振荡的幅度,以及它们对传热性能的影响。实验使用介电水在多个平行微通道中沸腾,质量通量为 220 和 320 kg/m²s,壁面热通量范围为 25 kW/m² 至 338 kW/m²。研究了两种不同的 MCHS,它们由无氧铜基板制成,每种 MCHS 包含 44 个平行微通道,标称深度分别为 500 µm 和 1000 µm,标称宽度一致,均为 200 µm。使用基板上嵌入的 T 型热电偶阵列测量温度梯度,从而测量传热系数。研究结果表明,在固定壁热流条件下,增加微通道深度会导致壁温波动幅度显著增加,从而降低传热性能。此外,研究表明压降明显依赖于冷却剂流量和两种微通道尺寸。这项研究为优化 MCHS 设计以增强热管理提供了新的见解,强调了微通道深度在缓解流动沸腾不稳定性以及提高整体传热效率方面的关键作用。
强制对流沸腾是一种有效的冷却技术,用于热载应用中的温度管理。由于对计算能力的不断增长的需求,微电子的快速发展在科学家和工程师面前设定了有效的微处理器的有效温度控制的任务[1,2]。此类应用的三维集成微处理器中的体积热通量已经达到10 kW/m 3 [2],并且此类处理器中的热通量分布可能非常不平衡。除此之外,已经开发了基于GAN晶体管的新一代电力电子产品,它具有高密度能量转换所需的特征,这将需要密集的冷却,[3]。在通道和微型通道中沸腾的流量已经积极研究[4-5]。例如,在[6]中,研究了具有均匀加热壁的微通道中的纵横比的影响,作者发现该比率对传热系数有很大的影响。在[7]中,研究了硅微通道水槽中的饱和水的饱和水,并研究了微通道的持续液压直径和不同的长宽比。已发现纵横比对传热特征有很大影响。然而,墙壁过热的关键问题,流动的固有不稳定以及在常规连续平行的微通道中的关键热通量值低,为在具有高热量磁通量的设备中实际应用的微通道散热器实际应用带来了严重的问题,[8]。在[9]中,研究了通道高度对传热的影响和具有不均匀加热(流量宽度大于加热器宽度)的平坦微型通道中的临界热通量。然而,尽管加热器与通道宽度之比的影响尚不清楚,尽管它可能对微型和微通道的沸腾传热效率产生重大影响。
摘要 - 由于技术的快速发展和开发,电子系统设计中的微型化已变得不可避免。由于较小的传热表面,热通量密度大大增加了热通量密度,因此对热管理能力提出了挑战。电子冷却中采用纳米流体似乎是实现更好的热量耗散的另一种方法。这项研究探讨了三元杂化纳米流体的可行性:Al 2 O 3:Sio 2在水中浓度不同的水中和混合物比例的水中,在蛇形冷却板中。在这项研究中,研究了0.01%的GO + Al 2 O 3:SIO 2,0.006%GO + Al 2 O 3:SiO 2和0.008%GO + Al 2 O 3:SIO 2的混合比为10:90和20:80(Al 2 O 3:Sio 2)。结果表明,与基础流体相比,纳米流体的0.01%GO + Al 2 O 3:SIO 2(10:90)纳米流体显示出最高增强的传热系数,高1.1倍。随后是0.008%GO + Al 2 O 3:SIO 2(10:90)和0.006%GO + Al 2 O 3:SIO 2(10:90),与基础流体相比,连续增强了1.03次和0.87倍的热传递系数增强。在混合比率的期限内,以10:90(Al 2 O 3:Sio 2)的表现高于20:80。为了评估采用的可行性,进行了优势比(AR)来测量热传递增强和压降效应。AR分析表明,在较低的雷诺,RE数字区域,0.01%GO + Al 2 O 3:SIO 2(10:90)三元杂交纳米流体被证明是最可行的,这是最可行的,这是由于热传递增强的压力较高。