食用花卉在世界各地有着丰富的消费和文献记录,横跨希腊、罗马、中世纪欧洲等古代文明以及中国和日本等亚洲国家 [1,2]。随着时间的推移,全球化和消费者意识的增强重新点燃了人们对食用花卉的兴趣,因为它们具有增进人类福祉和健康的潜力。研究重点关注其生物活性化合物,包括天然色素、精油和抗氧化剂,阐明其促进健康的功效和民间药用用途。食用花卉中常见的植物化学物质如表 1 所示。为了满足消费者对天然、功能性和健康食品的偏好,食用花卉在市场上获得了相当大的吸引力,导致人们对菊花、木槿、薰衣草、万寿菊和玫瑰等几种花卉的潜在益处进行了评估 [13,14]。大约有 180 种花卉被认定适合人类食用,可食用花卉不仅具有美感,而且是一种安全又有营养的选择。这些花朵除了香气之外,还作为食品中的功能性成分发挥着至关重要的作用,当加入各种菜肴和饮料(如茶、葡萄酒、果汁等)中时,还具有潜在的健康优势。[15,2]。除了烹饪吸引力之外,它们在传统医学中的广泛历史用途凸显了它们的药用价值。
摘要 目的/目标:本综述试图评估人工智能在阿育吠陀草药学和药物发现和开发中的优势和局限性。 材料和方法:进行了全面的文献检索,以确定关于人工智能和阿育吠陀融合的相关研究和文章。搜索包括 PubMed、Google Scholar 和相关期刊等数据库。对收集的数据进行分析,以全面概述该主题。讨论:人工智能融入阿育吠陀药理学可以推进药物效果的预测模型并支持个性化的治疗计划。在药品领域,人工智能可以优化配方并改善质量控制。在生药学中,人工智能有助于准确的植物识别和植物化学分析。人工智能驱动的药物发现可以识别多草药配方中的新化合物和协同作用。此外,人工智能可以通过区块链和光谱分析确保药物的真实性,提高阿育吠陀产品的纯度和安全性。结论:人工智能有可能通过提高准确性、效率和个性化来彻底改变阿育吠陀的 Dravya 领域。这种整合标志着传统医学技术方法的重大进步,有望改善患者治疗效果并在全球范围内更广泛地接受阿育吠陀。
摘要:Ciplukan植物(Physalisangulata L.)可以用作传统医学,但到目前为止,社区只知道该植物只能由水果使用。这项研究旨在确定可以使用不同的引物在Labuhan Batu utara Regency中对Ciplukan植物(Physalisangulata L.)上产生多态带的主要RAPD分析的结果。这项研究是一项定量研究。采样是在Labuhan Batu utara Regency的吉隆湖地区的Bondar Village和Simpang Tiga Village进行的。所使用的分析技术是北苏门答腊州立大学伊斯兰大学的科学技术学院遗传实验室中的分子分析。RAPD分析结果(随机应用多态性DNA)在Labuhan Batu utara摄政中使用六种不同的引物,即DNA片段中核苷酸的长度,在主要OPA-2和OPA-3中完成的DNA片段中的长度是600bp-3000bp,而OPA-5为600bp-3000bp,而OPA-5,OPA-5,OPA-7,OPA-7,OPA-7,OPD -1-1-11-11-11,&OPD-1-1-1-1-1-1。ciplukan植物中核苷酸序列的长度和数量差异是由不同位置和多种因素(例如环境,人群的数量,自然条件,繁殖方式和自然选择)引起的。关键字:RAPD,遗传多样性,Ciplukan植物。
引言纳米技术代表了一个快速增长的领域,在催化,太阳能,废物管理和传感技术中采用了不同的应用。在医疗领域,纳米材料用于药物输送,疾病诊断,心血管疾病的治疗,伤口愈合和抗菌剂的发育。纳米颗粒,尤其是使用贵金属合成的纳米颗粒,表现出在单个分子或散装金属中未发现的独特物理化学特性。Silver nanoparticles, in particular, are widely used due to their versatile applications.然而,纳米颗粒合成的常规方法是昂贵且对环境毒性的,因此需要探索替代性,环保合成方法。使用植物材料对银纳米颗粒的绿色合成提供了一种具有成本效益,快速和环境良性的方法。富含植物成分的植物提取物是银离子的还原剂,促进纳米颗粒合成。诸如温度,pH,植物提取物浓度和硝酸银浓度等因素会影响合成过程。Premna Integiria L.长期以来一直在传统医学中用于其抗菌和抗氧化特性。这项研究旨在使用综合假单胞菌的水叶提取物合成银纳米颗粒,并评估其物理化学特征和生物学活性。
摘要尽管开发了化学药物,但由于对使用植物提取物的信心和缺乏资源的信心,传统医学被广泛使用。该调查是由在线调查表通过Google表格进行的,并在28/06/2020和14/08/2020之间在互联网上访问。问卷有两个部分;一个在植物上用作补救措施,或者用于预防与使用这些物种相关的社会人口统计决定因素的共同数据和另一部分。使用自动库克Vina生物信息学工具用于在硅中评估从这些物种对SARS-COV-2的主要蛋白酶(MPRO)获得的植物化学物质的抑制潜力。共有1070名线人参加了这项调查。最有代表性的植物科是lamiaceae家族,最引用的三个物种是柠檬,大蒜和丁香(分别为183、171和150;分别为引文编号)。一项硅内研究表明,糖酸(甘草的活性成分)被揭示为对SARS-COV-2 MPRO的最潜在抑制剂。由于它们在植物化学物质中的丰富度,药用植物可能包含有希望的抗病毒药物质。这些化合物以其生物学活性而闻名,可以增加免疫反应并抗击氧化应激。关键字:药用植物,covid-19,sars-cov-2,在硅饮食中,摩洛哥。1。简介
简介:caspase 3,凋亡execution子手,抑制作用可能对糖尿病,肾病,神经退行性疾病治疗以及再生医学领域有益。自早期的传统医学以来,植物提取物包括许多疾病的主要治疗方法。植物成分一直是疗法的主要来源,这些资源是可用的。因此,为了鉴定植物提取物中潜在的抗凋亡剂的兴趣,选择了D-半乳糖酸(DGA)来筛选抗蛋白酶3活性,因为它是Momordica Charantia(苦瓜)和许多其他果实的果蝇组成的主要成分。目的:目前的研究旨在评估Charantia提取物的主要植物能力的活性,DGA针对caspase3。材料和方法:配体的化学结构来自获得的PubChem数据库,蛋白质结构是从PDB数据库中获得的。使用Autodock 4.2版进行了分子对接研究。结果:这项研究指出了DGA与caspase 3的Glu'124,Lys'137和Arg'164氨基酸的相互作用,其中Glu'124,Lys'137氨基酸相互作用对于caspase 3酶的稳定性很重要。结论:本研究中揭示的DGA和caspase 3之间的相互作用可能有助于表征未来研究中这种苦瓜提取物中这种植物成分的药用特性。
乳腺癌仍然是全球三重阴性乳腺癌(TNBC)女性中诊断得最多的癌症之一,占约15%至20%的癌症。TNBC的治疗具有挑战性,因为它对激素疗法没有反应,并且经常会产生对化学疗法的抵抗力。天然产品长期以来一直在传统医学中被用作改善健康和治疗疾病的补救措施。重要的是,它们在现代药物发现中具有关键作用。最近,人们对从天然来源寻找生物活性剂作为替代或互补方式的生物活性剂对常规治疗和合成药物的兴趣越来越多。特别是对于癌症的治疗,在全球范围内,发病率和死亡率一直在上升。Ziiphus nummularia是属于鼠李菜科的小灌木丛,已被广泛用于传统医学中,以治疗各种疾病。其传统的治疗用途可能归因于其在生物活性化合物中的丰富性及其药理学特性的丰富性,包括抗氧化剂,抗炎,抗癌性活动。然而,其植物化学组成或针对侵略性TNBC的化学预防作用仍在探索很差。在本研究中,制备了Z. Nummularia(Zne)叶片的乙醇提取物,并通过色谱分离。zne降低了MDA-MB-231细胞(TNBC细胞系)的生存能力,ZNE分数6(F6)表现出最强的活性。ZNE和F6富含植物化学物质,HPLC-PDA-MS/MS分析鉴定出了几种F6的化合物,其中F6特别富含咖啡因苯苯。ZNE和F6在DPPH分析中均显示出有效的抗氧化活性,但在MDA-MB-231细胞中促进了活性氧(ROS)的产生。抗氧化剂N-乙酰基半胱氨酸(NAC)钝化的作用。NAC还钝化了ZNE和F6诱导的TNBC细胞活力的降低。我们还证明了ZNE和F6在G1处诱导细胞周期停滞,并触发了凋亡和自噬介导的细胞死亡。这是通过Ki67和Bcl-2蛋白水平的降低以及p38,p21,p27,rb,caspase 3,bax和lc3b的增加证实的。ZNE和F6也抑制了转移相关的细胞过程。也就是说,ZNE和F6处理的MDA-MB-231细胞的细胞迁移,侵袭和对胶原蛋白的粘附降低。这得到了MMP-9和整联蛋白β1水平的降低支持。此外,ZNE和F6还减少了诱导型一氧化氮合酶(INOS)的产生,并抑制了摩擦内血管生成。还发现,通过抑制RAW 264.7巨噬细胞中LPS刺激的炎症反应,ZNE具有有效的抗炎特性。通过靶向NF-κB途径,它显着降低了iNOS,环氧合酶-2(COX-2)的mRNA和蛋白质表达。综上所述,我们的发现表明,Z. nummularia富含植物化学物质,可以减弱TNBC的恶性表型,并可能为发现新药铅的创新途径提供用于治疗TNBC和其他癌症的新药物。801
按。ISBN 978-0-19-064794-0将在课堂和课程网站上向您提供其他读数和其他课堂材料。 这些来源中的许多来源都可以在线以及通过Steen Library获得。 您需要有一个1-2英寸的3环粘合剂,以进行课程读数,作业和材料。 课程网站和其他媒体:作业,学习指南,时间表和其他讲座材料将发布在课程D2L网站上。 班级时间表是暂定的,因为我们可能会更快或更慢地讲座以适应课堂讨论。 网站材料不完整,不能替代出席。 如果您在家中没有互联网访问,请学习使用校园设施进行互联网访问进行课程分配。 课程描述:对医学,心理和健康人类学领域的调查。 主题包括:传统医学系统,跨文化心理学,身体,疾病/疾病概念,民族医学,民族药学,医生/患者互动和流行病学。 医学人类学家研究健康的心理和身体方面,因为世界上大多数医疗保健系统都整合了身心健康。 医学人类学是一个综合领域,它借鉴了文化,生物学,语言和考古人类学。 该班级的目的是了解人类处理健康和疾病领域的多种方式。 您将被要求阅读/查看,并认真评估文本,作业和电影。ISBN 978-0-19-064794-0将在课堂和课程网站上向您提供其他读数和其他课堂材料。这些来源中的许多来源都可以在线以及通过Steen Library获得。您需要有一个1-2英寸的3环粘合剂,以进行课程读数,作业和材料。课程网站和其他媒体:作业,学习指南,时间表和其他讲座材料将发布在课程D2L网站上。班级时间表是暂定的,因为我们可能会更快或更慢地讲座以适应课堂讨论。网站材料不完整,不能替代出席。如果您在家中没有互联网访问,请学习使用校园设施进行互联网访问进行课程分配。课程描述:对医学,心理和健康人类学领域的调查。主题包括:传统医学系统,跨文化心理学,身体,疾病/疾病概念,民族医学,民族药学,医生/患者互动和流行病学。医学人类学家研究健康的心理和身体方面,因为世界上大多数医疗保健系统都整合了身心健康。医学人类学是一个综合领域,它借鉴了文化,生物学,语言和考古人类学。该班级的目的是了解人类处理健康和疾病领域的多种方式。您将被要求阅读/查看,并认真评估文本,作业和电影。您还将被要求应用课堂上的内容来识别和解决医学人类学中的现实世界问题。学生学习目标:在学期结束时,每个学生都应该能够:
摘要:Peganum Harmala,也称为叙利亚rue或Wild Rue,是一种药用植物,已在传统医学中用于各种疾病。它包含几种生物碱,类黄酮和其他植物化学物质,它们显示了药理学活性,例如抗杏仁症,神经保护性,抗糖尿病和抗肿瘤作用。本综述总结了有关动物模型和人类研究中Harmala及其主要生物碱抗糖尿病作用的当前证据。harmala提取物和Harmine的血糖水平降低,提高胰岛素敏感性并预防糖尿病性肾病和视网膜病。作用机制涉及过氧化物酶体增殖物激活的受体伽马(PPAR-γ)的激活,刺激β细胞增殖和再生以及抑制氧化应激和炎症。P。Harmala和Harmine可能对2型糖尿病及其相关并发症具有潜在的治疗作用。关键词:Peganum Harmala,Harmine,抗糖尿病活动1。简介:糖尿病是一种慢性疾病,是一组代谢性疾病,其特征是血液中高水平的糖。(1)1型糖尿病(T1DM)和2型糖尿病(T2DM)都是具有多种危险因素的自身免疫性疾病。环境和遗传因素的组合。(2,3)在发达国家,糖尿病的患病率从5100万增加到7200万,反映了42%的增长。随后,它从8400万升至2.28亿,表明增长了70%。(4)。
引言传统医学和现代技术的融合引发了医疗保健的创新,尤其是在阿育吠陀领域。阿育吠陀(Ayurveda)是一种古老的印度医学体系,强调了整体治愈和自然疗法。rasa shastra是阿育吠陀的一个突出分支,自年龄以来,以治疗方式使用了以bhasmas形式的纳米颗粒。,但由于证据不足,人们对其安全性的关注没有得到解答。纳米技术通过解决生物利用度,有针对性的交付和稳定性等挑战,通过提高其有效性和可及性,从而为阿育吠陀医学提供了有希望的未来。方法本文回顾了有关纳米技术在阿育吠陀药物开发中的作用的当前文献。bhasma字面意思是灰烬,是纳米摄取尺寸(通常是5-50 nm,如现代显微镜和光谱技术所确定的),是独特的阿育吠陀Herbo-Minertalic-Minertallic化合物。这些是古典印度炼金术的产品,即“阿育吠陀Rasa Shastra”,用于治疗多样化的慢性疾病。[1,2]这些通常是通过阿育吠陀文本中提到的细致程序制备的,这些程序在分子水平上带来了其特征的基本变化。本文讨论了如何利用纳米级科学来纳米化草药提取物,工程师靶向药物输送系统并增强稳定性。合成的方法