图 1 | 使用 DNA 支架形成 Cy3 聚集体的化学方法。 (a) Cy3 (左) 共价连接到单链 DNA (ss-DNA) 脱氧核糖磷酸骨架的 3' 和 5' 端。 Cy3 修饰的 DNA 纳米结构是通过将 Cy3 修饰的 ssDNA 与规范互补的 ssDNA 链杂交而形成的,如连接到 DNA 双链体的 Cy3 单体的分子动力学快照 (中间) 和示意图 (右、上) 中蓝色椭圆表示 Cy3 所示。 Cy3 二聚体和三聚体是通过将连续的 Cy3 发色团连接到 ssDNA 并与互补链杂交而形成的 (右、中和下) (b) Cy3 单体 (棕色)、二聚体 (蓝色) 和三聚体 (绿色) 的吸光度 (实线) 和量子产率归一化的荧光光谱 (虚线)。 [DNA 双链] = 0.5 µ M,溶于 40 mM Tris、20 mM 醋酸盐、2 mM 乙二胺四羧酸 (EDTA) 和 12 mM MgCl 2 (TAE-MgCl 2 缓冲液)。(c) 双链中 Cy3 单体、二聚体和三聚体的荧光量子产量 (ΦF)。[DNA 双链] = 0.5 µ M,溶于 1 × TAE-MgCl 2 缓冲液。(d) Cy3 单体、二聚体和三聚体的圆二色性 (CD) 光谱。(e) Cy3 单体、二聚体和三聚体的荧光衰减轨迹,仪器响应函数以黑色显示。
目前的深度学习算法可能无法在大脑中运行,因为它们依赖于权重传输,即前向路径神经元将其突触权重传输到反馈路径,而这种方式在生物学上可能是不可能的。一种称为反馈对齐的算法通过使用随机反馈权重实现了没有权重传输的深度学习,但它在困难的视觉识别任务上表现不佳。在这里,我们描述了两种机制——一种称为权重镜像的神经回路和 1994 年 Kolen 和 Pollack 提出的算法的修改——这两种机制都允许反馈路径即使在大型网络中也快速准确地学习适当的突触权重,而无需权重传输或复杂的布线。在 ImageNet 视觉识别任务上进行测试,这些机制的学习效果几乎与反向传播(深度学习的标准算法,使用权重传输)一样好,并且它们优于反馈对齐和另一种较新的无传输算法符号对称方法。
摘要无线电力传输(WPT)技术的最新进展为消费者和行业提供了更方便,高效和智能的电动汽车(EV)和智能设备(SDS)(例如智能手机,无人机,机器人和物联网)的收费。WPT已被采用,以免手工频繁地进出充电。仅凭重型电池就无法解决所有移动物体的饥饿能量问题,最终应该为此充电。在本教程中,首先简要介绍了包括电感功率传递(IPT)在内的WPT的基本原理,并解释了主要的WPT理论,例如耦合线圈模型,Gyrator电路模型,磁性镜像模型和一般统一的动态词曲模型。电动汽车的WPT进展得到了广泛的解释,它们分类为固定的电动汽车(SCEV)和道路驱动电动汽车(RPEV)。SCEV由于便利性和安全性而变得越来越吸引人。此外,由于电动汽车市场份额和可再生能源的市场份额迅速增加,电动汽车和网格的互操作性变得非常重要。电动汽车不再是简单的能源消费者,而是电网的能源提供者。WPT是一种有前途的解决方案,可以在停放时自动将电动汽车与网格连接。这是SCEV作为可互操作系统的灵活手段的潜在贡献。详细解决了线圈设计,大容忍度充电,补偿电路和异物检测(FOD)问题。也总结了全球技术发展的最新进展。rpevs没有严重的电池问题,例如大,重,昂贵且昂贵的电池组以及较长的充电时间,因为它们在移动时直接从道路上获得电源。通过创新的半导体开关,更好的线圈设计,巷道构造技术和更高的操作频率的优点,已提高了WPTSS的功率转移能力,效率,电磁场(EMF),气隙,大小,重量和成本。引入了WPT的最新进展。SD的WPT中的进步被解释了,根据操作环境,它们彼此之间的不同。智能手机是WPT中最成功的应用程序,现在正在不断发展,以获得太空中的更多收费自由。由于分布式和物联网的多种性质,WPT的广泛领域非常具有挑战性。各种动力水平和耐力时间的各种无人机和机器人需要具有足够快速的充电速度,并具有位置自由度。最近的技术发展将解释。解决了WPT问题的未来,其中包括可互操作的无线电动汽车,更长的距离IPT,3D无线充电器和合成的磁场聚焦(SMF)。
DOE/EERE更新Jen Slide 3:好的,因此,我们将从能源部及其能源效率和可再生能源办公室或EERE的更新开始,或者GTO是其中的一部分。这里的第一个项目 - 与石油行业专有技术在地热能源中打破地面的冠军是对我们共享的特别有趣的。这是关于乔斯·阿拉曼迪兹(JoséAramendiz)和塞萨尔·维瓦斯(CésarVivas)的EERE成功故事,俄克拉荷马大学两家博士学位。团队在我们2023年秋季地热学院比赛的技术轨道上赢得了第一名。在哥伦比亚石油行业分别工作时,将两个学生都介绍给地热能源。他们对地热的兴趣使他们前往OU,去年他们和队友在那里设计了一个地热井系统,以加热和冷却Osage Nation 40,000平方英尺的温室,并为本地食品主权提供了支持。他们的获胜团队最近举办了一项社区利益相关者活动,讨论他们的地热学院竞争项目,稍后您将获得更多信息。他们的故事是石油和天然气行业技能如何应用地热能的一个很好的例子。我们希望您能阅读完整的故事,以了解有关这两位工程师的更多信息,我们期待他们接下来要做什么。接下来,我们从3月开始有一个亮点,当DOE宣布在亚利桑那州,肯塔基州,内华达州,宾夕法尼亚州和西弗吉尼亚州的五个项目中宣布高达4.75亿美元,以加速在当前和以前的矿场上的清洁能源部署。两党基础设施法的这笔资金将支持各种清洁能源项目,包括地热直接使用。这些项目将为当地社区提供服务,并作为在全国当前和前矿业社区中可以复制的模型。同样在3月,DOE的能源转型倡议伙伴关系项目(Etipp)发布了2023财政年度的报告。GTO是帮助资助Etipp的几个DOE办公室之一,该办公室为偏远和岛屿社区提供了计划支持,系统设计,能源教育和专业知识,以寻求有弹性的解决方案,以解决气候威胁和关注点,例如更激烈的天气事件。FY2023报告概述了ETIPP的团队直接向社区进行技术援助以及计划改进,例如帮助社区催化清洁能源演示和部署。4月,EERE宣布打算发出多个资金机会(将超过1亿美元的资金机会)用于现场演示和其他研究,以支持电网的更好计划和运行。这些机会的目标包括更好地计划和运行分布式能源系统,以及通过与清洁,分布式能源提供动力的网格连接的建筑物和车辆优化系统 - 表明这些技术已准备好支持国家的能源未来。资金机会包括Connected Communities 2.0,GTO是合作者。
关于DTI,数据传输计划(DTI)是与科技行业和其他利益相关者合作的政策专家和技术人员的非营利组织,以增强数据可移植性。我们的使命是通过简单,安全的数据传输来增强人们的能力,从而扩大数字经济中的选择和机会。Vision Data Portability赋予个人能力,增强市场竞争并推动创新。当人们能够轻松,安全地移动其个人数据时,他们会从新的机会和下游创新中受益,而这些创新将是不可能的。这种重新构成市场,从而使用户,新进入者和更广泛的在线生态系统受益。数据可移植性的许多令人惊讶的好处在于隐私,但在当今最关键的技术政策挑战中起着不可或缺的作用:
CTM Rosnay - 海军上将皮埃尔·巴约特 (Pierre Barjot):潜艇兵,他因在 1956 年苏伊士远征期间指挥法国军队而闻名,由于没有后代,他的家人将他的勋章赠予了 CTM,CTM 多年来一直在勒布朗 (Le Blanc) 维护他的坟墓; CTM France Sud - 护卫舰上校卡米尔·蒂索 (Camille Tissot):海军学校教授,对传动系统充满热情,是上世纪初的“机载高频传动之父”; CTM Kerlouan - 首席军士长 Jean-François L'Her:为法国牺牲的水手,被埋葬在 Kerlouan,他的名字已经被赋予一艘现已退役的公海巡逻舰 (PHM); CTM Sainte-Assise - 水手 Bernard Maître:为法国牺牲的潜艇员和无线电操作员,因拒绝背叛而被德国人枪杀。
• 粒子漂移的方向从一个太阳黑子周期变化到下一个周期。 • 对于 A>0,当 GCR 进入日光层时,漂移将它们带向两极并沿着电流片向外移动。 • 对于 A<0,模式相反(“A 负”)
课程简介:学生将通过实践和模拟活动探索电路中的能量传递。绩效期望:HS-PS3-1:创建一个计算模型,当已知系统中其他组件的能量变化和流入和流出系统的能量时,计算系统中一个组件的能量变化。MS-PS3-2:开发一个模型来描述当远距离相互作用的物体的排列发生变化时,系统中会存储不同数量的潜在能量。具体学习成果:学生将能够 - 通过探索微电子在日常设备中的作用来吸引兴趣。 - 通过实践活动研究微电子元件如何管理和存储能量。 - 解释微电子系统中的能量关系并利用计算模型。 - 将他们对微电子能量管理的理解应用于实际问题。 - 评估他们对微电子中的能量传递、潜在能和计算建模的理解。叙述/背景信息 对于微电子 5E 课程计划,学生需要掌握基本电路概念的基础知识,包括了解电阻器、电容器和电源等组件。他们应该熟悉能量传递的原理,包括势能和动能的作用,以及欧姆定律与电压、电流和电阻的关系。了解能量如何存储(在电容器中)和耗散(在电阻器中)很重要,以及微电子如何在智能手机或计算机等日常设备中发挥作用。熟悉电子表格或电路仿真软件等基本计算工具也将有助于学生在课堂上模拟电路中的能量关系。 科学与工程实践:开发和使用模型 开发一个模型来描述不可观察的机制。(MS-PS3-2) 使用数学和计算思维 创建现象、设计设备、过程或系统的计算模型或模拟。(HS-PS3-1)
