Haibin Wang a,b , Chun Zhao a,* , Li Yin a,b , Xinjian Li c , Xin Tu b , Eng Gee Lim a , Yina Liu d
得益于大量的研究努力,有机太阳能电池已成为可再生能源领域的有力候选者,据报道其能量转换效率超过 19%,使用寿命超过几十年。在组成有机太阳能电池的薄膜堆栈中,界面处的传输层起着关键作用,与光活性材料本身一样重要。由于这些界面所需的非常特殊的特性,电子 (ETL) 和空穴 (HTL) 传输层确实直接与器件的效率和稳定性有关。专注于 HTL 界面,大量材料已用于有机太阳能电池,例如 2D 材料、导电聚合物或过渡金属氧化物。在这篇综述中,我们介绍了用于制造有机太阳能电池的 HTL 材料的演变和最新进展,描述了它们的特性和沉积过程,并将它们与活性层中的富勒烯或新型非富勒烯受体的用途联系起来。关键词:有机太阳能电池;界面;空穴传输层。
摘要:钙钛矿太阳能电池 (PSC) 引起了越来越多的研究兴趣,但其性能取决于材料的选择和所用的工艺。这些材料通常可以在溶液中处理,这使得它们非常适合卷对卷加工方法,但它们在环境条件下的沉积需要克服一些挑战以提高稳定性和效率。在这篇评论中,我们重点介绍了钙钛矿材料以及空穴传输层 (HTL) 和电子传输层 (ETL) 材料的光子固化 (PC) 的最新进展。我们介绍了如何使用 PC 参数来控制钙钛矿 HTL 和 ETL 层的光学、电学、形态和结构特性。强调这些进步对钙钛矿太阳能电池的重要性可以进一步凸显这项研究的重要性,并强调其在创造更高效和可持续的太阳能技术方面的重要作用。
摘要 量子点发光器件已成为显示应用的重要技术。它们的发射是分别通过空穴和电子导电层传输的正负电荷载流子复合的结果。这些器件中电子或空穴传输材料的选择不仅要求层间能级对齐,而且还要求平衡电子和空穴向复合位点的流动。在这项工作中,我们研究了一种通过控制电荷载流子动力学来优化器件的方法。我们采用阻抗谱来检查电荷载流子通过每一层的迁移率。得出的迁移率值提供了一条路径来估算每个电荷载流子向发光层的跃迁时间。我们认为,当两个电荷载流子向有源层的跃迁时间相似时,可以获得最佳器件结构。最后,我们通过重点优化电子传输层的厚度来检验我们的假设。
Mott(康涅狄格州法明顿)将利用其现有的制造和研究设施来设计、制造、涂覆和表征钛 PTL。Mott 办公空间(康涅狄格州法明顿)将成为行政和数据分析活动的场所。Nel Hydrogen(康涅狄格州沃灵顿)将负责水电解池和电池组的设计、制造、组装和测试;水电解器组件的实验室分析;以及数据处理、分析和呈现。多孔材料和粉末的原子层沉积、放大测试和材料分析将在科罗拉多州桑顿的 Forge Nano 设施中进行。康涅狄格大学(康涅狄格州斯托尔斯)将负责开发快速原位筛选方法、电解器电池的组装、测试活动、微型 CT 成像以及制造的 PTL 和膜电极组件的表征。所有设施都是为本奖项所要开展的工作类型而预先存在的专用设施。无需进行任何设施改造或获得新许可证。
以下 ITU-T 建议书和其他参考文献包含的条款通过本文引用而构成本建议书的条款。出版时,所示版本有效。所有建议书和其他参考文献都可能修订;因此,鼓励本建议书的用户调查应用下列建议书和其他参考文献的最新版本的可能性。当前有效的 ITU-T 建议书清单定期发布。本建议书中对某文件的引用并不赋予其作为独立文件的建议书地位。
本文已被接受以进行出版和进行完整的同行评审,但并未通过复制,排版,分页和校对过程,这可能会导致此版本与记录版本之间的差异。请引用本文为doi:10.1002/adma.202203794。
摘要:无机选择性接触和卤化物钙钛矿 (HaPs) 之间的界面可能是使用这些材料制造稳定且可重复的太阳能电池的最大挑战。NiO x 是一种具有吸引力的空穴传输层,因为它适合 HaPs 的电子结构,而且高度稳定且可以低成本生产。此外,NiO x 可以通过可扩展且可控的物理沉积方法(如射频溅射)制造,以促进可扩展、无溶剂、真空沉积的基于 HaP 的太阳能电池 (PSC) 的探索。然而,NiO x 和 HaPs 之间的界面仍然无法得到很好的控制,这有时会导致缺乏稳定性和 V oc 损失。在这里,我们使用射频溅射来制造 NiO x,然后在不破坏真空的情况下用 Ni y N 层覆盖它。Ni y N 层在 PSC 生产过程中对 NiO x 进行双重保护。首先,Ni y N 层保护 NiO x 免受 Ar 等离子体将 Ni 3+ 物种还原为 Ni 2+ 的影响,从而保持 NiO x 的导电性。其次,它钝化了 NiO x 和 HaPs 之间的界面,保持了 PSC 的长期稳定性。这种双重效应将 PSC 效率从平均 16.5%(创纪录电池 17.4%)提高到平均 19%(创纪录电池 19.8%),并提高了器件稳定性。关键词:卤化物钙钛矿、太阳能电池、氧化镍、氮化镍、钝化、界面■简介
载体选择性ETL和HTL对于提取和运输电荷至关重要,同时最大程度地减少了界面电荷重组。在配置的钙钛矿太阳能电池中,钙钛矿层沉积在ETL层的顶部。9因此,ETL层的质量和特性直接影响光吸收钙钛矿层的性质。因此,开发和优化ETL层已成为研究的热门话题。最初,由于其合适的光电特性,TIO 2被广泛用作钙钛矿太阳能电池中的电子传输层。然而,它具有卵形照明下的光催化特性,需要大约500 1 c的高温退火以实现适当的结晶度,从而使该材料不适合用于PSC的升级和商业化。3,10–12为了克服这些缺点,已经研究了替代的N型金属氧化物,应允许低温处理,成本较低,应提高稳定性。13–17