引言自从 20 世纪 60 年代末 ARPAnet 诞生以来,传统互联网就对服务和社会产生了变革性的影响。现在,随着量子信息和计算技术的进步,一种新型通信网络即量子互联网的研究正在进行中 [1, 2]。这种网络由能够共享纠缠的节点组成,纠缠是一种通过称为量子隐形传态的过程传输量子信息的资源。发送以量子系统状态编码的信息的能力将实现多种新服务,如安全通信、高精度时钟同步、分布式和盲量子计算以及量子遥测。然而,量子互联网的创建需要重新思考和重新设计传统互联网所依赖的网络协议,以支持量子力学的特性和局限性。幸运的是,该领域已经在开展令人兴奋的工作,量子网络堆栈的不同层都取得了进展。在物理层,已在光纤中证明了数十公里距离的纠缠[3, 4]。已提出了一种链路层协议[5],用于在物理连接的量子节点之间提供强大的纠缠生成服务。在网络层,[6–9]讨论了纠缠路由问题,[10]提出了一种传输层的量子重传协议。
5材料研究中心纳米结构科学研究中心,国家材料科学研究所,1-1纳米基,塔苏卡巴,日本305-0044 *乐队。反演对称性在菱形堆积的过渡金属二分法元素(TMDC)中赋予它们与平面电动极化相关的界面铁电性。通过将扭转角作为旋钮构建菱形堆积的TMDC,可以生成具有交替平面偏振的抗fiferroelelectric域网络。在这里,我们证明了这种并行堆叠的扭曲WSE 2中这种空间周期性的铁电极化可以将其Moiré电位烙印在远程双层石墨烯上。这种遥远的Moiré电位产生了明显的卫星电阻峰,除了石墨烯中的电荷 - 中性点,它们可以通过WSE 2的扭曲角度调节。我们对有限位移场上铁电滞后的观察表明,Moiré由远程静电电势传递。通过MoiréFerroelectricity构建的超级晶格代表了一种高度灵活的方法,因为它们涉及Moiré构造层与电子传输层的分离。这个远程莫伊尔被确定为弱势势,可以与常规的莫伊尔共存。我们的结果通过利用Moiré铁电性提供了二维材料的工程带结构和特性的全面策略。
电池储能系统 (BESS) 在电网中日益增长的兴趣凸显了其在未来电网中的重要作用。在电网的传输层,大型电池由于其快速响应可以提供负载频率控制。电池集成到电网中可以有效地减少由小负载扰动引起的频率和联络线功率曲线的振荡 [1]。一般来说,较小的时间常数、快速响应和高能量密度为 BESS 在电力系统中创造了广泛的潜在应用。关于 BESS 在电力系统中的不同应用,有大量的文献。[2] - [3] 研究了结合 AGC 的电池对负载频率调节的影响。此外,[4] 和 [5] 研究了作为微电网和大型风电场备用电池。在 [4] 中,表明孤立微电网中的大规模电池储能可以改善微电网响应电力系统动态的动态性能。在 [5] 中,从电力系统稳定性和控制的角度研究了电池集成在风电场中的影响。此外,电力系统中的电池集成可以改善大型风电系统的频谱响应,并抑制系统的频率振荡。在 [6] 中,设计了用于充电模式的风电场和 BESS 的协调控制器,以保证电网频谱响应与期望响应几乎完美匹配。电力系统中的大规模电池集成还可以提高电力系统的暂态稳定性
为了实现氢经济和新的脱碳能源模式,需要降低从生产到最终使用的核心清洁氢技术的成本和效率。在生产方面,这体现在能源部的“氢能地球计划”中,即在 10 年内将氢气生产成本降至 1 美元/千克,以及区域清洁氢中心计划。使用可再生清洁电力作为原料达到这些成本指标的固有方法是使用电解。电解技术中最重要的是利用离子导电聚合物(离子聚合物)的技术,包括聚合物电解质水电解器 (PEWE)。然而,这些技术需要表现出更高的效率、(动态)性能和耐用性,以降低成本并实现商业可行性。同样,离子聚合物对于实现固定和重型应用的燃料电池 (PEFC) 至关重要。 PEWE 和 PEFC 都涉及多个组件(例如催化剂、离子聚合物、传输层、膜、板)和多个阶段,现象发生在不同的时间和长度尺度上。这些技术的关键是离子聚合物和催化剂之间的界面,而传输现象在其中起着关键作用。在本次演讲中,我们将通过劳伦斯伯克利国家实验室的最新进展(包括基于离子聚合物的水电解中心 (CIWE) 的努力)概述其中一些技术。
在这项研究中,具有活性层的有机太阳能电池(OSC),非富烯烯(NFA)Y6作为受体的多种混合物,以及供体PBDB-T-2F作为供体的供体,通过一维太阳能能力模拟(SCAPS-1D)的一维太阳能(SCAPS-1D)模拟了这种类型的polimer-iC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC的型号模拟。活动层。pfn-br界面层固定在OPV设备中,可提供总体增强的开路电压,短路电流密度和填充因子,从而显示设备的性能。PEDOT:PSS是一种电导性聚合物溶液,由于其较强的孔亲和力,良好的热稳定性,高功能和高透明度在可见范围内,它已在太阳能电池设备中广泛使用作为孔传输层(HTL)。有机太阳能电池的结构是ITO/PEDOT:PSS/BTP-4F:PBDB-T-2F/PFN-BR/AG。首先,将活动层厚度优化为100 nm;之后,活动层厚度最高为900 nm。这些模拟的结果表明,活动层厚度可能明显达到500 nm,然后随着600 nm的活性层的增加而降低,还注意到短路电流和填充因子随着600 nm的增加而增加,而填充层则从600 nm的增加,而开放电压电路则随着活性层的增加而增加。最佳厚度为500 nm。
摘要 - 传输层数据无意间泄漏元数据 - 例如谁与谁交流。尽管存在强大运输层隐私的工具,但它们具有采用障碍,包括与移动设备不符的性能开销。我们认为,通过更改所有流量的元数据隐私的目标,我们可以为运输层隐私的务实方法打开一个新的设计空间。作为朝这个方向发展的第一步,我们建议使用信息流控制中的技术,并提出了一种有原则的方法,用于构建具有元数据隐私的系统的正式模型,以供某些人拒绝,可拒绝,流量。我们证明,可否认的流量实现了针对强大对手的元数据隐私 - 这构成了信息流控制和我们知识的匿名交流的首次桥接。此外,我们表明,可以通过为拒绝即时消息传递(牛仔布)设计新颖的协议来扩展现有的最新协议以支持元数据隐私,该协议是信号协议的变体。为了显示我们方法的功效,我们在未修改的信号之上实施并评估了一个即时消息传递系统运行牛仔布。我们从经验上表明,信号上的牛仔布可以在不破坏现有功能的情况下保持低延迟的信号流量,同时支持可拒绝的信号流量。
Wireshark允许我们查看流过我们网络的流量并进行剖析,从原始数据中窥视框架。SSL和TLS是两个在OSI模型的传输层上运行的加密协议。他们使用各种加密方法在跨网络移动时保护数据。ssl/tls加密使使用Wireshark更具挑战性,因为它可以防止管理员查看每个相关数据包携带的数据。当正确设置Wireshark时,它可以解密SSL/TLS并恢复您使用预先使用预先秘密密钥在Wireshark中解密SSL的原始数据的能力。客户端由客户端生成,并由服务器使用来得出对会话流量进行加密的主密钥。这是当前的加密标准,通常是通过Diffie-Hellman实施的。步骤1。存储主机秘密密钥,以正确解密SSL/TLS连接,我们需要存储解密密钥。当必须连接到服务器时,键将自动从客户端生成。为了在Windows/Linux/MacOS中查看并保存Pre-Staster秘密密钥,我们需要将有效的用户路径设置为操作系统的SSLKeyLogFile环境变量。作为一个例子,在Linux和MacOS上,我们可以简单地打开终端E类型以下字符串:
a。德累斯顿电子(CFAED),德累斯顿技术大学,Helmholtzstraße18,01069,德国,电子邮件:yana.vaynzof@tu-dresden.de b。 Leibniz固态和材料研究Dresden,Helmholtzstraße,20,01069德国德累斯顿,德国无机剖宫产碘化铅(CSPBI 3)Perovskite太阳能电池(PSC)引起了极大的关注,由于其极佳的热稳定性和光学频带的应用,并适用于〜1.73 EV)。 但是,在低温下处理高效的光伏设备仍然具有挑战性。 在这里,我们报道了一种在温度较低时在低温下制造高效和稳定的γ-CSPBI 3 PSC的新方法,而不是引入长链有机阳离子盐乙烷乙烷1,2-二摩米碘化物(EDAI 2)并调节乙酸铅(PB(OAC)2)在perofskite Pressor solory中的含量(PB(OAC)2)。 我们发现EDAI 2充当可以促进γ-CSPBI 3形成的中间体,而多余的Pb(OAC)2可以进一步稳定CSPBI 3钙钛矿的γ期。 因此,在新方法制造的CSPBI 3膜中观察到了改善的结晶度和形态以及载体重组的减少。 通过优化CSPBI 3倒置太阳能电池的孔传输层,我们证明了高达16.6%的效率,超过了先前检查倒置PSC中γ-CSPBI 3的报道。 值得注意的是,封装的太阳能电池在室温和昏暗的光线下维持其初始效率的97%,持续25天,证明了Edai 2和Pb(OAC)2对稳定γ-CSPBI 3 PSC的协同作用。德累斯顿电子(CFAED),德累斯顿技术大学,Helmholtzstraße18,01069,德国,电子邮件:yana.vaynzof@tu-dresden.de b。 Leibniz固态和材料研究Dresden,Helmholtzstraße,20,01069德国德累斯顿,德国无机剖宫产碘化铅(CSPBI 3)Perovskite太阳能电池(PSC)引起了极大的关注,由于其极佳的热稳定性和光学频带的应用,并适用于〜1.73 EV)。但是,在低温下处理高效的光伏设备仍然具有挑战性。在这里,我们报道了一种在温度较低时在低温下制造高效和稳定的γ-CSPBI 3 PSC的新方法,而不是引入长链有机阳离子盐乙烷乙烷1,2-二摩米碘化物(EDAI 2)并调节乙酸铅(PB(OAC)2)在perofskite Pressor solory中的含量(PB(OAC)2)。我们发现EDAI 2充当可以促进γ-CSPBI 3形成的中间体,而多余的Pb(OAC)2可以进一步稳定CSPBI 3钙钛矿的γ期。因此,在新方法制造的CSPBI 3膜中观察到了改善的结晶度和形态以及载体重组的减少。通过优化CSPBI 3倒置太阳能电池的孔传输层,我们证明了高达16.6%的效率,超过了先前检查倒置PSC中γ-CSPBI 3的报道。值得注意的是,封装的太阳能电池在室温和昏暗的光线下维持其初始效率的97%,持续25天,证明了Edai 2和Pb(OAC)2对稳定γ-CSPBI 3 PSC的协同作用。
摘要:磷化铟 (InP) 量子点使不含重金属、发射线宽窄且物理上可弯曲的发光二极管 (LED) 成为可能。然而,高性能红色 InP/ZnSe/ZnS LED 中的电子传输层 (ETL) ZnO/ZnMgO 存在高缺陷密度,沉积在 InP 上时会猝灭发光,并且由于陷阱从 ETL 迁移到 InP 发光层而导致性能下降。我们推测,ZnS 外壳上 Zn 2+ 陷阱的形成,加上 ZnO/ZnMgO 和 InP 之间的硫和氧空位迁移,可能是造成这一问题的原因。因此,我们合成了一种双功能 ETL(CNT2T,3 ′,3 ′″,3 ′″″-(1,3,5-三嗪-2,4,6-三基)三(([1,1 ′-联苯]-3-腈)),旨在局部和原位钝化 Zn 2+ 陷阱并防止层间空位迁移:小分子 ETL 的主链包含三嗪吸电子单元以确保足够的电子迁移率(6 × 10 − 4 cm 2 V − 1 s − 1),具有多个氰基的星形结构可有效钝化 ZnS 表面。我们报告的红色 InP LED 具有 15% 的 EQE 和超过 12,000 cd m − 2 的亮度;这代表了基于有机 ETL 的红色 InP LED 中的记录。■ 简介
在这项工作中,Taguchi方法方法用于优化氧化石墨烯(GO)作为倒置的钙钛矿太阳能电池(IPSC)中的孔传输层(HTL)。通过使用此方法,优化了来自数值建模太阳能电池电容模拟器 - 尺寸(SCAPS-1D)的数据。尽管它具有不同的参数结果和不同的原因,但完成分析过程也需要很长时间。据报道,Taguchi方法能够找到最重要的因素并减少更少的时间的参数变化。Taguchi算法在本实验中使用,因为它基于正交阵列(OA)实验,该实验为具有最佳控制参数值的实验提供了较小的方差。SCAPS-1D软件用于使用HTL模拟IPSC。 然后分析使用软件获得的结果,并将其与太阳能电池的性能进行比较。 最终结果表明,与以前的研究人员相比,Taguchi方法与HTL相比优化了IPSC,HTL的功率转化效率(PCE)提高了,效率从18.53%.23.408%提高。SCAPS-1D软件用于使用HTL模拟IPSC。然后分析使用软件获得的结果,并将其与太阳能电池的性能进行比较。最终结果表明,与以前的研究人员相比,Taguchi方法与HTL相比优化了IPSC,HTL的功率转化效率(PCE)提高了,效率从18.53%.23.408%提高。