安全性和生产力是地下采矿业公司最关心的问题。为了提高安全性和生产力,使用传感方法了解地下环境非常重要。这些传感器可以获得重要的测量因素,例如温度、湿度和气体浓度,这些因素有助于做出准确的决策。然而,开发一种能够将传感器从地下获得的数据传输到地面的通信系统仍然具有挑战性。除此之外,在不断扩大的地下矿井中维护有线通信系统的成本很高,而且断线的风险很高。因此,在地下通信系统中引入和使用无线通信网络 (WSN)。本研究提出了一种地下通信系统的数据传输系统,其中选择 Wi-Fi Direct 和电力线通信 (PLC) 作为系统的一部分。目的是进行演示实验并根据矿井条件分析系统的性能。在本研究中,开发了一种成本最低的数据传输系统,使用 PLC 和 Wi-Fi Direct 作为通信手段以及 Wi-Fi Ad hoc。 Wi-Fi Direct 系统的结果是,数据记录器与智能手机之间的直线距离为 140 米。此时,通信速度为 9.1MB/s,这意味着在数据记录器将数据传递给矿工的智能手机之前,矿工可以恢复 230MB 的数据。智能手机之间的直线距离为 130 米,它们能够以 5.7MB/s 的速度进行通信。当数据从一部智能手机共享到另一部智能手机时,可以共享 72MB 的数据。地下矿井中必要的监测数据可以作为文本和图像文件可靠地传输。此外,基于性能分析的结果,展示了地下矿井数据传输系统的设计。估算了所提出的系统的成本,并与最常见的通信系统(漏泄馈线)进行了比较。所提出的系统仅以 3% 的成本和 2% 的维护成本实现通信。所提出的数据传输系统可以低成本安装在包括矮空间的复杂地下矿井中,并且易于扩展。该数据传输系统可以通过安装设备转移到其他矿井,使其成为地下采矿公司正在寻找的数据传输系统。
在大坝管理和大坝可靠性评估中出现的首要问题之一是悬浮颗粒的沉积。沉积影响能源生产和效率,储存,排放能力和洪水衰减能力。在本文中,使用有限体积方法(FVM)软件ANSYS对大坝溢洪结构中的沉积物传输和冲刷进行建模。根据离散相模型(DPM)制定了水流中悬浮颗粒的轨迹。为了访问仿真模型,使用缩放的大坝溢洪道模型进行了粒子图像速度法(PIV)实验。从模拟和PIV实验获得的发现之间的差异小于4.89%,推断数值模型是可以接受的。发现最大搜查率和最大沉积速率分别为4.20×10-9 kg/s和2.00×10-6 kg/s。因此,基于唯一考虑解决悬浮颗粒的搜查和沉积,应每8.9年进行一次每8.9年的水坝维护。这项工作证明了在研究中基于DPM的数值模拟的生存能力,在研究沉积物传输问题的流体相互作用中,尤其是用于应用大坝可靠性。
摘要。在这项工作中,我们通过实验研究了电应力对 T = 2 K 温度下 p 型硅 MOSFET 内单空穴传输特性可调谐性的影响。这是通过监测通道氧化物界面处三个无序量子点的库仑阻塞来实现的,众所周知,由于它们的随机起源,这些量子点缺乏可调谐性。我们的研究结果表明,当施加 -4 V 至 -4.6 V 之间的栅极偏压时,附近的电荷捕获会增强库仑阻塞,从而导致更强的量子点限制,在执行热循环重置后可以恢复到初始设备状态。然后重新施加应力会引起可预测的响应,量子点充电特性会发生可重复的变化,并且会观察到高达 ≈ 50% 的持续充电能量增加。我们在栅极偏压高于 -4.6 V 时达到了阈值,由于大规模陷阱生成导致设备性能下降,性能和稳定性会降低。结果不仅表明应力是增强和重置充电特性的有效技术,而且还提供了有关如何利用标准工业硅器件进行单电荷传输应用的见解。
h(t) 可以理解为来自 SAW 最小值的 EL 信号。因此,自相关直方图可以看作是一系列等距函数 J(∆t)=(h∗hmirror)(∆t) 的总和。图 S4(a) 显示了 τ = 0.2 和 w = 0.05 的 h(t) 的示例,而图 S4(b) 显示了镜像 hmirror(t)。它们的卷积 J(∆t) 绘制在图 S4(c) 中。这个单峰可以理解为图 S3 中各个峰的实际形状,这意味着即使这些峰之间存在明显的重叠,也可以单独评估特定峰的贡献。因此,如果已知 SAW 驱动的 EL 的理论函数 J(∆t),就可以更准确地估计来自抑制峰的真实信号,例如图 3(a) 中的抑制峰。从图 3(b) 中平均直方图的拟合结果可以看出,每个峰的形状由 J (∆ t ) 确定,其中 τ = 99.6 ps,w = 33 ps,BG g2 = 2.79。可以假设图 3(a) 中的每个峰具有相同的形状,但由于统计样本方差,其峰幅度不同。这些在 ∆ t = ∆ t (i) 处的峰具有不同的幅度 A g2(i) ,其与 g (2) (∆ t (i) ) 成正比。反映方差的改进自相关函数可以表示为
摘要 - 我们提供了一个以双整合器动力学建模的移动机器人团队的编队控制器,以操纵围绕轮廓的可变形物体。操纵任务定义为达到目标配置,该目标配置由2D中的形状,比例,位置和方向组成,同时保留对象的完整性。我们提供了一组旨在允许对定义任务的变量的不耦合控制的控制器。对控制器的形式分析在与平衡状态的解耦,稳定性和收敛性方面深入覆盖。此外,我们还包括控制屏障功能,以执行与任务相关的安全限制,即碰撞和过度拉伸避免。在模拟和实际实验中说明了该方法的性能。
有效运输,转换和储存热能在促进脱碳和减轻全球变暖方面起着不可分割的作用。[1]已针对纳米级[2]的热运输进行了重大努力,该应用是由热电学收获,[3]微电子中的热量管理等应用所驱动的,[4]高效率热储存系统,[5] [5]和结构材料的被动冷却。[6]但是,我们对声子热传输的理解在很大程度上受到了无法获得频率分辨的声子传输的实验工具的阻碍。可测量的电导率κ和界面热电导G是最重要的两个可测量的两个,但提供了有限的微型信息。另一方面,频率分辨的松弛时间τ(ω)和
[fe 2(h 0.67 bdt)3]·9H 2 O(1)(图1),为BDT 2- = 1,4-苯并二甲酸酯(图1B),56,57
将乙二醇 (EG) 侧链引入共轭聚合物主链是设计有机混合离子电子导体 (OMIEC) 的成熟合成策略。然而,薄膜膨胀对混合导电性能的影响尚未确定,特别是对于电子传输 (n 型) OMIEC。本文,作者研究了支链 EG 链长度对基于萘-1,4,5,8-四羧酸二酰亚胺-联噻吩主链的 n 型 OMIEC 混合电荷传输的影响。原子力显微镜 (AFM)、掠入射广角 X 射线散射 (GIWAXS) 和扫描隧道显微镜 (STM) 用于确定干燥条件下共同主链薄膜之间的相似性。带耗散监测的电化学石英晶体微天平 (EQCM-D) 和原位 GIWAXS 测量表明,在电化学掺杂过程中,薄膜膨胀特性和微观结构会发生明显变化,具体取决于侧链长度。研究发现,即使在与水性电解质接触时晶粒含量会损失,薄膜仍能有效地传输电荷,而高水含量会损害 OMIEC 薄膜内的电子互连性。这些结果强调了控制薄膜吸水量以阻止 n 型电化学装置中的电荷传输的重要性。
已经针对该系统的不同组件进行了文献调查。表一概述了功率转换阶段、高效功率转换的关键组件以及针对每个部分的相关文献调查。最近的调查主要关注功率转换技术 [4], [6], [7]、整流器拓扑 [7], [8] 或从网络角度来看的 RFEH [5], [9]。然而,在已报道的评论中,RFEH 的天线设计并未被视为关键参数。例如,虽然一些调查从整体角度考虑了天线的带宽和效率,或针对小型化或可穿戴天线等小众应用的特定天线设计 [8], [10],但尚未对某些天线参数对功率接收和转换效率的影响进行详细分析。 58 本综述回顾了整流天线中的天线设计技术,旨在区分 RFEH 和 WPT 特定的天线设计挑战与通信的标准天线设计。从两个角度比较天线,即端到端阻抗匹配和辐射特性,每个角度都进行比较。
量子点(QD)固体是有希望的光电材料;进一步提高其设备功能需要了解其能量传输机制。The commonly invoked near-field Förster reso- nance energy transfer (FRET) theory often underestimates the exciton hopping rate in QD solids, yet no consen- sus exists on the underlying cause.为了响应,我们使用了时间分辨超快刺激的发射消耗(STED)显微镜,这是STED的超快速转化,以在泰氏剂掺杂的核心/核心/钙含量的核/钙含量硫化物硫化物硫化物 - 硫化物 - 硫化物 - 壳QD超弹药中的超快转化。我们测量了由于激子在超晶格内采样异质的能量景观而导致的伴随时间分辨的激子衰减。通过单粒子发射光谱量化异质性。这套强大的多模式集合集合对激子传输的动力学蒙特卡洛模拟提供了足够的约束,以阐明一种复合运输机制,该机制包括近场和以前被忽视的远场排放/吸收性贡献。发现这种机制提供了一个急需的统一框架,可以在其中表征QD固体中的传输和设备设计的其他原理。