在模块内部,每对差分电信号都输入到 CDR(时钟数据恢复)芯片。然后,恢复和重新定时的信号被传送到激光驱动器,该驱动器将小的摆动电压转换为驱动冷却 EML 激光器的输出调制。激光驱动器分别控制四个 EML,其中心波长为 1296 nm、1300 nm、1305 nm 和 1309 nm。每个激光器都提供对传输激光功率和调制摆动随温度和电压变化的控制。来自四个激光器的光信号以光学方式多路复用在一起。组合的光信号通过行业标准 LC 光连接器耦合到单模光纤。光信号经过设计,符合 100 千兆以太网或 OTU4 规范。
在模块内部,每对差分电信号都输入到 CDR(时钟数据恢复)芯片。然后将恢复和重新定时的信号传递到激光驱动器,该驱动器将小的摆动电压转换为驱动冷却 EML 激光器的输出调制。激光驱动器分别控制四个 EML,其中心波长分别为 1296 nm、1300 nm、1305 nm 和 1309 nm。每个激光器都提供对传输激光功率和调制摆动随温度和电压变化的控制。来自四个激光器的光信号在光学上被多路复用在一起。组合的光信号通过行业标准 LC 光连接器耦合到单模光纤。光信号经过设计以满足 100 千兆以太网或 OTU4 规范。
•QKD是量子信息科学的主要应用•实际实现易受噪声•噪声阻碍:1。可实现的关键费率2。传输距离•提高噪声阻力是剩余的关键挑战之一•我们通过将信息编码为𝑑-
摘要:利用在1550 nm处产生的EPR纠缠,在单个光纤信道上实验实现了实时确定性量子隐形传态。利用1342 nm激光束实时传输经典信息,同时作为同步光束,实现量子信息与经典信息的同步。通过优化在Alice站点建立的用于操纵EPR纠缠光束的有耗通道的传输效率,实验研究了保真度对光纤信道传输距离的依赖关系。确定性量子隐形传态的最大传输距离为10 km,保真度为0.51±0.01,高于经典隐形传态极限1/2。该工作为基于确定性量子隐形传态在光纤信道上建立城域量子网络提供了一种可行方案。
摘要:由于量子计算技术的快速发展,基于计算复杂性的加密系统正面临严重威胁。基于量子力学的基本定理,连续变量量子密钥分布(CVQKD)具有物理绝对安全性的属性,并且可以有效地克服当前加密系统对计算复杂性的依赖性。在本文中,我们构建了空间耦合(SC) - 高密度均等检查(LDPC)代码和准循环(QC)-LDPC代码,通过采用高级电视系统(ATSC)的订单来调查,通过在condecs中进行订购,以提高这些编码,以在这些标准中启用cond cod cod cod cod cond cod cond cond condciation contrices contrices condciation condciatiation cond condece cond condcipiatiation cond contrice-dpc-ldpc代码。和解效率的表现,然后对最终的秘密关键率和传输距离进行进一步的改进。仿真结果表明,所提出的LDPC代码可以达到高于0.96的对帐效率。此外,通过使用我们建议的LDPC代码进行信息核对,我们可以通过使用建议的LDPC代码获得高最终的秘密关键率和较长的传输距离。