图8牙周疾病的发病机理以及预防或治疗的可能途径。通过几种毒力因子,例如抗原或脂多糖(LPS),致病性微生物刺激宿主免疫炎症反应。免疫元素,包括多形核白细胞(PMNLS)和抗体,可以抑制令人讨厌的微生物,以及各种细胞因子,前列腺素或酶可能会影响结缔组织组织和骨代谢,最终导致临床典型的杂货店和牙周培训。遗传因素或环境/获得因素可能会分别影响疾病的风险。潜在的干预途径包括缩放和根策划以及使用抗菌剂来抑制袋中的微生物(即影响微生物挑战),非甾体类或其他抗炎药以抑制细胞因子或前列腺素(即影响宿主免疫反应),抑制了宿主的反应(即,双膦酸盐)以抑制整骨骨吸收和宿主调节疗法(例如,低剂量口服强力霉素)抑制基质 - 甲基甲蛋白酶(MMP)活性(即影响结缔组织和骨代谢)。
在其边缘有离散时间标签的时间网络中,信息只能沿着边缘的序列“流”,而无需降低(分别增加时间标签。在本文中,我们第一次尝试了解一个边缘上信息流的分解如何影响其他边缘上信息流的方向。通过自然地扩展静态图中及时取向的经典概念,我们介绍了时间及时方向的基本概念,并系统地研究了其算法行为。我们的主要结果是一种概念上的简单,但在技术上涉及的多项式时间算法,用于识别时间图G是否可以定位。与众不同,我们证明,令人惊讶的是,必须认识到G是否可以严格定位。此外,我们还将进一步的与时间传递性有关的问题引入,尤其是它们的时间传递完成问题,我们证明了算法和硬度结果。
间接影响(Biddle 等人,2020 年)。33 人在火灾中丧生(Bushfire Royal Commission,2020 年),另有 429 人估计死于森林大火烟雾(Johnson 等人,2020 年)。全国有 3000 多所房屋被烧毁(Bushfire Royal Commission,2020 年),约 30 亿脊椎动物死亡或流离失所(WWF Australia,2020 年)。数十种受威胁和非受威胁物种的保护状况可能会被重新审视,其中一些物种预计将灭绝(Ward 等人,2020 年;Wintle、Legge 和 Woinarski,2020 年),全国至少有 2430 万公顷土地被烧毁(Bushfire Royal Commission,2020 年)。仅在澳大利亚东部,就有面积与英格兰相当的地区被烧毁,面积接近 1300 万公顷(Wintle、Legge 和 Woinarski 2020 年)。澳大利亚还记录了有史以来最大的火灾,即 Gospers Mountain 特大火灾,仅火灾就烧毁了 50 万公顷土地(新南威尔士州政府 2020 年)。
血液遗传疾病是由基因或其调控元件的突变引起的,这些突变会导致蛋白质功能失调、失调或缺失。传统的基因治疗方法是使用病毒载体将突变基因的功能性拷贝添加到患者细胞中,例如腺相关病毒 (AAV)(Mingozzi 和 High,2011)和慢病毒 (LV) 衍生载体(Naldini,2011)。这些经过修饰的病毒可以将其基因组中编码的转基因表达盒递送到细胞核中,在那里使用遗传信息。这种基因替换策略与突变无关,因此可以使患有相同疾病的患者受益,无论其基因型如何。尽管在体外和体内治疗多种单基因疾病方面取得了显著成功( Dunbar 等人,2018 年),但在改善治疗结果和治疗具有挑战性的单基因疾病(如血红蛋白病、免疫缺陷和先天性贫血)以及多因素血液疾病(如癌症、自身免疫和感染性疾病)方面仍然存在重大障碍。除了载体特异性问题,如免疫原性和向性( Masat 等人,2013 年; Colella 等人,2018 年)(超出了本综述的范围)之外,经典基因置换有一个主要局限性:很难在病毒载体环境中忠实地重现内源启动子的特性和基因特异性调控。组织、发育和刺激特异性基因表达需要不同基因组元件(启动子、增强子和沉默子)的复杂相互作用,这些元件可能位于基因组的较远区域,跨越几千个碱基(Schoenfelder and Fraser,2019 年)。AAV 载体是小病毒(约 4.7 kb),限制了表达盒中调控元件的选择,尤其是在递送大型转基因时(Li and Samulski,2020 年)。此外,它们主要以游离体的形式存在于非分裂细胞中,并在细胞分裂过程中逐渐丢失(Nakai 等人,2001 年;Ehrhardt 等人,2003 年;Bortolussi 等人,2014 年),这是一个主要障碍
- 在 ................................. 前期,核膜碎裂成碎片 - 在 ................................. 中期,纺锤体有丝分裂的赤道板形成 - 在 ................................. 中期,染色单体分离形成两组子染色体 - DNA 合成的时期称为 S 期 - 纺锤体有丝分裂由微管组成,微管是亚基微管蛋白的聚合物 - 染色体迁移是通过纺锤体微管与与每个染色体的着丝粒相关的结构结合实现的:着丝粒
市场上有大量基于光学技术的区域表面形貌测量仪器。然而,由于缺乏对光和部件表面之间复杂相互作用的理解,将光学仪器投入生产存在问题——研究仪器的光学传递函数有助于解决这个问题。本报告旨在回顾光学传递函数测量技术。从空间相干、单色共焦扫描成像系统的基础出发,介绍了三维 (3D) 成像中的光学传递函数理论。进一步的概括得以回顾,从而允许将该理论扩展到描述传统和干涉 3D 成像系统,涉及一系列空间相干性。还简要考虑了多色传递函数。进一步专门针对表面形貌的测量。在介绍理论结果之后,介绍了测量每类系统的光学传递函数的实验方法,重点介绍了在 3D 成像和表面形貌测量中建立校准标准的合适方法。
本文由Scholarworks@UARK带给您免费的计算机科学和计算机工程访问。已被授权的ScholarWorks@Uark的授权管理员纳入计算机科学和计算机工程本科生的荣誉。有关更多信息,请联系scholar@uark.edu,uarepos@uark.edu。
此预印本的版权所有者此版本于 2022 年 9 月 20 日发布。;https://doi.org/10.1101/2022.09.20.508560 doi:bioRxiv preprint