摘要:超表面作为由亚波长结构构成的人工材料,具有强大的调控线性和非线性光场的能力,极大地推动了纳米光子学的发展。最近,等离子体超表面已被证明可以作为可饱和吸收体(SA),其调制性能远高于其他SA,表现出优异的非线性偏振传递函数。然而,由于等离子体共振的偏振依赖性,超表面饱和吸收体的工作带宽通常很窄,不利于宽带超快激光的产生。本文,我们提出了一种银双纳米棒等离子体超表面,实现了稳定的宽带饱和吸收,这归功于双棒结构独特的间隙共振模式。泵浦光同时激发精心排列的银纳米棒上的偶极共振和纳米棒对之间的间隙模式,提高了超表面可饱和吸收体的响应带宽。通过将超表面插入光纤激光器腔内,分别获得了工作在1.55和1.064 μ m处的稳定脉冲序列。该工作不仅进一步释放了超表面在超快激光领域的潜力,也为宽带非线性器件的设计提供了新的思路。关键词:等离子体超表面,宽带,可饱和吸收体,超快激光器,光纤激光器
K t = 电机扭矩系数,单位为 N m/amp K e = 电机反电动势系数,单位为 V/(rad/s) V batt = 电池电压,伏特 R tt = 电机电阻(端子到端子),欧姆 J m = 电机和螺旋桨惯性,单位为 kg m2 D r = 转子(螺旋桨)直径,单位为 m ρ = 空气密度,单位为 kg/m3 T = 螺旋桨推力,NQ = 螺旋桨扭矩,单位为 N m CT = 螺旋桨推力常数 CP = 螺旋桨功率常数 Ixx 、I yy 、Izz = 无人机惯性矩,单位为 kg m2 m = 无人机质量,单位为 kg L x 、L y = 从 CG 到电机的力矩臂,单位为 m ω x 、ω y 、ω z = 机身轴旋转速度,单位为 rad/s ψ、θ、φ = 惯性轴到机身的欧拉角,单位为 rad ux 、uy 、uz =感知位置处的体轴速度 ux cg , uy cg , uz cg = 重心处的体轴速度 ω m = 电机速度,rad/s T d = 硬件更新延迟,惯性测量单元 (IMU) T d 2 = 硬件更新延迟,OptiTrack 反馈 CG = 重心 z cg = OptiTrack 传感器测量点下方的垂直重心距离 G 输出输入 = 从输入到输出的传递函数
K t = 电机扭矩系数,N m/amp K e = 电机反电动势系数,V/(rad/s) V batt = 电池电压,伏特 R tt = 电机电阻(端子到端子),欧姆 J m = 电机和螺旋桨惯性,kg m2 D r = 转子(螺旋桨)直径,米 ρ = 空气密度,kg/m3 T = 螺旋桨推力,N Q = 螺旋桨扭矩,N m C T = 螺旋桨推力常数 C P = 螺旋桨功率常数 Ixx ,I yy ,Izz = 无人机惯性矩,kg m2 m = 无人机质量,kg L x ,L y = 从 CG 到电机的力臂,米 ω x ,ω y ,ω z = 机身轴旋转速度,弧度/秒 ψ,θ,φ = 惯性轴到机身的欧拉角,弧度 u x ,u y , u z = 感测位置处的身体轴速度 u x cg , u y cg , u z cg = 重心处的身体轴速度 ω m = 电机速度,rad/s T d = 硬件更新延迟,惯性测量单元 (IMU) T d 2 = 硬件更新延迟,OptiTrack 反馈 CG = 重心 z cg = OptiTrack 传感器测量点下方的垂直重心距离 G 输出输入 = 从输入到输出的传递函数
分裂型人格是一组潜在的人格特质,表示易患精神分裂症或某种谱系障碍。本研究旨在调查参数有效的大脑连接特征,以对高分裂型和低分裂型状态进行分类。在一项情绪听觉异常任务中,记录了 13 名高分裂型和 11 名低分裂型参与者的脑电图 (EEG) 信号。在事件相关电位稳定后获取用于机器学习的大脑连接信号。使用有向传递函数 (DTF) 方法从 EEG 信号中估计基于多元自回归 (MVAR) 的连接测量。五个标准频带中的 DTF 功率值用作特征。支持向量机 (SVM) 揭示了高分裂型和低分裂型之间的显著差异。使用 SVM 的结果的准确度、特异性和灵敏度分别高达 89.21%、90.3% 和 88.2%。我们的结果表明,前额叶/顶叶和前额叶/额叶脑区的有效脑连接会根据分裂型人格状态发生显著变化。这些发现证明脑连接指数为检测分裂型人格提供了有价值的生物标记。在诊断出分裂型人格后,进一步监测 DTF 的变化可能会及早发现精神分裂症和其他谱系障碍。
摘要 - 在锂离子(锂离子)电池模型的领域,由于其简单性,长期以来,单个粒子模型(SPM)被认为是在嵌入式应用中迎来物理启发模型(PIMS)时代的有希望的减少订单模型(ROM)候选者。然而,在高负载电流下,标准SPM在计算电池的端子电压时表现出较差的精度,从而使其不合适,可以作为植物模型在状态估计任务中。对文献的显着电解质增强SPM的全面评估表明,当前的解决方案在数学上是棘手的或过于简单的。对于电解质中的离子浓度,跨越计算复杂性和数学障碍的边界的众所周知的二次近似模型显示出时间性能较差,尤其是在当前的集电极接口上。在这项工作中,我们保留了二次近似模型的空间动力学,同时使用系统识别技术为其时间动力学提出了一种新颖的方法。通过使用相关子系统的线性近似值,我们确定了每个电极区域内电解质中锂离子单位面积的摩尔数的离散时间传递函数,从而提高了电解质浓度的时空精度。然后,我们使用新的系统识别电解质动力学增强标准SPM,以达到电解质增强的复合单粒子模型(EECSPM)。最后,与现有的最先进的面前相比,我们将表现出EECSPM的出色性能,从而代表了在实时应用程序中使用PIMS的具体目标。
ADC 模拟数字转换器 AGC 自动增益控制 ASCII 美国信息交换标准代码 ASPRS 美国摄影测量与遥感协会 BRDF 双向反射分布函数 CAAD 计算机辅助建筑设计 CAD 计算机辅助设计 CAM 计算机辅助制造 CCD 电荷耦合器件 CCIR 国际无线电咨询委员会 (Comité consultatif international pour la radio) CD-ROM 光盘 - 只读存储器 CID 电荷注入装置 CIE 国际照明委员会 (Commission Internationale de l’Éclairage) CIPA 国际建筑摄影测量委员会 (Comité International de Photogrammétrie Architecturale) CMM 坐标测量机 CMOS 互补金属氧化物半导体 CT 计算机断层扫描、断层摄影 CTF 对比度传递函数 DAGM 德国模式识别协会 (Deutsche Arbeitsgemeinschaft für Mustererkennung) DCT 离散余弦变换 DGPF 德国摄影测量协会, Fernerkundung und Geoinformation(德国摄影测量、遥感和地理信息学会) DGZfP Deutsche Gesellschaft für Zerstörungsfreie Prüfung(德国无损检测学会) DIN Deutsches Institut für Normung(德国标准化研究所) DLT 直接线性变换 DMD 数字镜面装置 DOF 自由度 DRAM 动态随机存取存储器 DSM 数字表面模型DTP 桌面出版 DVD
分裂型人格是一组潜在的人格特质,表示易患精神分裂症或某种谱系障碍。本研究旨在调查参数有效的大脑连接特征,以对高分裂型和低分裂型状态进行分类。在一项情绪听觉异常任务中,记录了 13 名高分裂型和 11 名低分裂型参与者的脑电图 (EEG) 信号。在事件相关电位稳定后获取用于机器学习的大脑连接信号。使用有向传递函数 (DTF) 方法从 EEG 信号中估计基于多元自回归 (MVAR) 的连接测量。五个标准频带中的 DTF 功率值用作特征。支持向量机 (SVM) 揭示了高分裂型和低分裂型之间的显著差异。使用 SVM 的结果的准确度、特异性和灵敏度分别高达 89.21%、90.3% 和 88.2%。我们的结果表明,前额叶/顶叶和前额叶/额叶脑区的有效脑连接会根据分裂型人格状态发生显著变化。这些发现证明脑连接指数为检测分裂型人格提供了有价值的生物标记。在诊断出分裂型人格后,进一步监测 DTF 的变化可能会及早发现精神分裂症和其他谱系障碍。
3.1控制系统l T P 5-2理由是学生知道过程行业中各种植物控制的先决条件。自动控制系统可节省人力,降低生产成本,提高成品的准确性,并有助于大规模生产,以便要求该主题的知识更深入地掌握控制环境/技术,因为需要在主题中研究。过程控制,过程仪器。详细内容1。Introduction (20 hrs) Basic elements of control system, open loop control system, closed loop control system, control system terminology, manually controlled closed loop systems, automatic controlled closed loop systems, basic elements of a servo mechanism, Examples of automatic control systems, use of equivalent systems for system analysis, linear systems, non-linear systems, control system examples from chemical systems, mechanical systems, electrical systems, introduction to laplace transform.2。AC和DC伺服电机同步器,Steppermotor,Amplyede的传递函数分析。交流位置控制系统,磁性放大器。(14小时)3。控制系统表示(16小时)传输函数,框图,减少框图,框图上的问题,梅森的公式信号流程图4。时间响应分析(16小时)标准测试信号,一阶系统和二阶系统的时间响应,时间常数,二阶系统的时间响应,时间响应规范,稳态错误和错误常数,第一阶和二阶系统中的问题。5。稳定性(14小时)Routh Hurwitz标准,根源基因座,使用半日志图纸绘图
摘要 目的. 描述竞争性脑机接口游戏中胜负双方大脑内部和之间的连接方向。方法. 十对组合 (26.9 ± 4.7 岁,8 名女性和 12 名男性) 参加了研究。在基于神经反馈的竞争性游戏中,他们使用来自电极位置 Pz 的相对阿尔法 (RA) 波段功率来控制虚拟跷跷板。每对玩家根据得分分为赢家 (W) 和输家 (L)。使用多元格兰杰因果关系 (GC) 和有向传递函数分析脑内连接,而使用双变量 GC 分析脑间连接。主要结果. 线性回归分析显示 RA 与个人得分之间存在显著关系 (p < 0.05)。在游戏过程中,W 玩家保持的 RA 高于 L 玩家,尽管它没有高于他们的基线 RA。脑内 GC 分析表明,两组都参与了一般的社交互动,但只有 W 组成功控制了 Pz 的大脑活动。L 组采用了不适当的金属策略,其特点是左额叶皮层活动强烈,表明他们参与了合作游戏。脑间 GC 显示从 L 组到 W 组的信息流更大,这表明 W 组更有能力监控对手的活动。意义。先天神经指标和游戏心理策略都会影响游戏结果。未来的研究应该调查这两个因素之间是否存在因果关系。
准确度——它被定义为指示值和实际值之间的差异。实际值可能是一个已知标准,通过将其与获得的值进行比较可获得准确度。如果差异很小,准确度就很高,反之亦然。准确度取决于其他几个参数,如滞后、线性、灵敏度、偏移、漂移等。它通常以跨度百分比、读数百分比甚至绝对值表示。标准值由政府设定,以维持标准。 读数准确度:是读数时与真实值的偏差,以百分比表示。仪器的绝对准确度是以数字而不是百分比表示的与真实值的偏差。 跨度——它可以定义为仪器从最小到最大刻度值的范围。对于温度计,其刻度从-40°C到100°C。因此,其跨度为140°C。如前所述,准确度定义为跨度的百分比。它实际上是以跨度的百分比表示的与真实值的偏差。 精度——可定义为信号可读取的极限。例如,如果考虑一个模拟刻度,其刻度设置为 0.2 psi,则可估计仪器指针的位置在 0.02 psi 以内。因此,该仪器的精度为 0.02 psi。 范围——可定义为仪器可测量的最低读数和最高读数之间的测量值。温度计的刻度为 −40°C 至 100°C。因此,范围从 −40°C 到 100°C。 再现性——可定义为仪器在相同条件下重复读取相同输入后重复产生相同输出的能力。 灵敏度——也可称为过程的传递函数。它是仪器输出变化与相应测量变量变化之间的比率。对于良好的仪器或过程,灵敏度应始终较高,从而产生更高的输出幅度。 偏移——偏移是零输入仪器的读数。