摘要:神经系统疾病通常无法治愈而使人衰弱。当前大多数疗法都是姑息性的,而不是改善疾病。因此,非常需要新的治疗神经系统疾病的策略。基于mRNA的治疗药具有巨大的治疗这种神经系统疾病的潜力。但是,交付的挑战限制了其临床潜力。脂质纳米颗粒(LNP)是大脑的有前途的递送载体,因为它们的毒性更安全和效果更高。尽管如此,对于LNP介导的mRNA传递到大脑的信息知之甚少。在这里,我们采用了基于MC3的LNP,并成功地将CRE mRNA和CAS9 mRNA/AI9 SGRNA传递到成年AI9小鼠脑;在整个纹状体和海马中,大于一半以上的海马,通过直接的脑内注射MC3 LNP mRNA沿着罗斯特·尾轴穿透。MC3 LNP CRE mRNA成功转染了纹状体中的细胞(效率约为52%)和海马(约49%的效率)。此外,我们证明了MC3 LNP CAS9 mRNA/AI9 SGRNA编辑了纹状体中的细胞(效率约为7%)和海马(约3%效率)。进一步的分析表明,MC3 LNP介导mRNA递送到多种细胞类型,包括大脑中的神经元,星形胶质细胞和小胶质细胞。总体而言,基于LNP的mRNA递送在脑组织中有效,并显示出对治疗复杂神经系统疾病的巨大希望。
全国各地的年轻人现在可以通过年轻人的免费公交旅行计划获得免费的公共交通,我们正在支持个人和企业,以使更健康,更可持续的旅行选择。我们正在正面处理在气候紧急情况下运输的作用,同时意识到运输的重要作用在日常生活中继续发挥作用 - 确保我们能够获得教育,工作,培训和社交活动。随着许多家庭和企业面临着显着增加的生活成本,我们认识到运输支出构成了另一个(通常是不可避免的)费用。我们的目的是确保在全国范围内获得负担得起的,可访问和可持续的运输。我们知道,未来的挑战是巨大的,并且将私人汽车的使用和过渡减少到日常旅程的更多步行,骑行或骑自行车将对某些人面临更大的挑战。
体内基因治疗面临的最大挑战之一是载体介导高度选择性的基因转移到特定治疗相关细胞群中。我们在此介绍 DARPin 靶向 AAV(DART-AAV),展示针对人类和鼠 CD8 的 DARPin。将 DARPin 插入 AAV2 和 AAV6 衣壳蛋白 1(VP1)的 GH2/GH3 环中,可实现对 CD8 阳性 T 细胞的高选择性,同时基因传递活性不受影响。值得注意的是,衣壳核心结构未发生改变,突出的 DARPin 可检测到。在复杂的原代细胞混合物中,包括供体血液或小鼠全身注射,CD8 靶向 AAV 在选择性、靶细胞活力和基因转移率方面远远优于未改造的 AAV2 和 AAV6。在体内,将单个载体注射到经过条件化的人源化或免疫功能正常的小鼠中,可击中高达 80% 的活化 CD8+ T 细胞。虽然在非活化条件下基因转移率显著降低,但在将 Cre 递送到指示小鼠中时,仍然可以检测到 CD8+ T 细胞中的选择性基因组修饰。在两种小鼠模型中,CD8+ T 细胞的选择性接近绝对,但肝脏的靶向性极强。本文描述的 CD8-AAV 扩展了免疫学研究和体内基因治疗选择的策略。
1这是欧盟立法的不完整清单,与数据治理相关:欧洲议会的2016/679法规(EU)和2016年4月27日的2016年4月27日的理事会,涉及对自然人的保护在处理个人数据以及此类数据的自由竞争以及95/46/EC的自由数据方面的保护(一般数据)。 1-88;欧洲议会和2019年6月5日理事会的2019/944指令(EU)2012年6月5日的《电力和修订指令》 2012/27/eu oj l 158,14.6.6.6.2019,p。 125–199;欧洲议会和2019年6月20日理事会的2019/1024指令(欧盟)关于开放数据和重新使用公共部门信息OJ L 172,26.6.2019,p。 56–83;欧洲议会和2022年5月30日理事会的第2022/868号法规(EU)关于欧洲数据治理和修订法规(EU)2018/1724(数据治理法)OJ L 152,3 .6.2022,p。 1-44岁于2022年6月23日生效,将于2023年9月适用;欧洲议会和2022年10月19日理事会的第2022/2065号法规(EU)在数字服务和修订指令2000/31/EC(数字服务法)的单一市场上(数字服务法) 1-102,从2024年1月起生效;欧洲议会和2022年9月14日理事会的法规(EU)2022/1925关于数字领域的可竞争和公平市场2019/1937和(EU)2020/1828(数字市场)OJ L 265,12.10.10.2022,p。 1-66,实际上是2023年6月;在撰写本文时,理事会已经采用了有关《人工智能法》数据法的一般方法
此类任务同样可以先离线学习状态转移预测模 型再使用 MPC 计算控制输入 [28-29] ,或直接使用强 化学习方法 [68-69] ,但需要大量训练数据且泛化性较 差。在准静态的局部形变控制中,更常用的方法是 在线估计局部线性模型。该模型假设线状柔性体形 状变化速度与机器人末端运动速度在局部由一个雅 可比矩阵 JJJ 线性地联系起来,即 ˙ xxx ( t ) = JJJ ( t ) ˙ rrr ( t ) ,其 中 ˙ xxx 为柔性体形变速度, ˙ rrr 为机器人末端运动速度。 由于使用高频率的闭环反馈来补偿模型误差,因此 完成任务不需要非常精确的雅可比矩阵。 Berenson 等 [70-71] 提出了刚度衰减( diminishing rigidity )的概 念,即离抓取点越远的位置与抓取点之间呈现越弱 的刚性关系,并据此给出了雅可比矩阵的近似数学 表示。此外,常用的方法是根据实时操作数据在线 估计雅可比矩阵,即基于少量实际操作中实时收集 的局部运动数据 ˙ xxx 和 ˙ rrr ,使用 Broyden 更新规则 [72] 、 梯度下降法 [73] 、(加权)最小二乘法 [33-34,74] 或卡尔 曼滤波 [75] 等方法在线地对雅可比矩阵进行估计。 该模型的线性形式给在线估计提供了便利。然而, 雅可比矩阵的值与柔性体形状相关,因此在操作 过程中具有时变性,这使得在线更新结果具有滞 后性,即利用过往数据更新雅可比矩阵后,柔性体 已经移动至新的形状,而新形状对应的雅可比矩阵 与过往数据可能并不一致。同时,完整估计雅可比 矩阵的全部元素需要机器人在所有自由度上的运 动数据,这在实际操作过程中难以实现,为此一些 工作提出根据数据的奇异值进行选择性更新或加 权更新 [74] 。此外,此类方法需要雅可比矩阵的初 值,一般在操作前控制机器人沿所有自由度依次运 动,收集数据估计初始位置的雅可比矩阵。受上述 问题影响,在线估计方法往往仅适用于局部小形变 的定点控制,难以用于长距离大形变的轨迹跟踪。 Yu 等 [31] 提出 ˙ xxx = JJJ ( xxx , rrr ) ˙ rrr 的模型形式,其中 JJJ ( · ) 为 当前状态至雅可比矩阵的非线性映射,待估计参数 为时不变形式。基于该模型,该方法将离线学习与 在线更新无缝结合,实现了稳定、平滑的大变形控 制。 Yang 等 [76-77] 使用模态分析方法建立柔性体模
培训人工智能(AI)系统需要大量数据,AI开发人员面临访问所需信息的各种障碍。合成数据已将研究人员和行业的想象力作为解决这个问题的潜在解决方案。虽然可能需要对合成数据的某些热情,但在这篇简短的论文中,我们为简单叙事提供了至关重要的配重,这些叙述将合成数据定位为对每个数据访问挑战的一种无需成本的解决方案,突显了伦理,政治,政治和治理性,可以创建合成数据的使用。我们质疑合成数据本质上可以免于隐私和相关的道德问题的想法。我们警告说,将二元反对的构架数据构架对“真实”测量数据可能会巧妙地将数据收集器和处理器持有的规范标准转移。我们认为,通过承诺将数据与其组成部分(其代表和影响的人)离婚,合成数据可能会给民主数据治理带来新的障碍。
摘要 在我们的社会中,对生产和使用更多数据的需求日益增长。数据正在达到推动每个行业部门的所有社会和经济活动的程度。技术不再是障碍;然而,在技术大规模部署的地方,数据的生产会产生对更好的数据驱动服务日益增长的需求,同时,数据生产的好处在很大程度上推动了全球数据经济的发展,数据已成为企业最有价值的资产。为了充分发挥其价值并帮助数据驱动型组织获得竞争优势,我们需要有效和可靠的生态系统来支持跨境数据流动。为此,数据生态系统是组织内或跨组织数据共享和重用的关键推动因素。数据生态系统需要应对数据管理的各种基本挑战,包括技术和非技术方面(例如法律和道德问题)。本章探讨了大数据价值生态系统,并详细概述了几种数据平台实现,作为共享和交易工业和个人数据的尽力而为的方法。我们还介绍了实现数据平台的几种关键支持技术。本章最后介绍了数据平台项目遇到的常见挑战,并详细介绍了应对这些挑战的最佳实践。
摘要。在医学研究领域,即使对于相同的疾病,通常也将不同的科学方法用于研究和实验,但最终结果并不相同。本文旨在基于大数据视野,并综合了不同的现有研究结果,分析精神疾病中有机精神障碍的治疗计划。基于大数据在医学实验中的应用,本文使用大数据技术来定量分析和处理大脑有机精神疾病的相关研究结果以及相似病例的治疗数据,并使用适当的统计方法来分析多个研究结果,进行定量,定性,系统和标准化的综合分析来研究有机精神疾病的不同治疗方法和治疗效果。实验结果表明,基于大数据的有机精神疾病的治疗可以实时观察和了解患者的病情,并及时调整治疗计划。与传统的治疗方法相比,检测时间疾病的可能性增加了约13%,对脑有机疾病的治疗效果增加了约15%。
SLC4A10 是一种质膜结合转运蛋白,它利用 Na + 梯度驱动细胞 HCO 3 − 吸收,从而介导酸排出。在哺乳动物的大脑中,SLC4A10 在主要神经元和中间神经元以及脉络丛(调节脑脊液产生的器官)的上皮细胞中表达。通过对来自五个不相关家族的九名受影响个体的样本进行下一代测序,我们发现双等位基因 SLC4A10 功能丧失变异会导致人类出现临床上可识别的神经发育障碍。该病的主要临床特征包括婴儿肌张力减退、所有领域的精神运动发育迟缓和智力障碍。受影响的个体通常表现出与自闭症谱系障碍相关的特征,包括焦虑、多动和刻板动作。有两例患者在出生后的头几年内报告了单独的癫痫发作,另一例患儿在脑电图上显示双颞叶致癫痫放电,但没有明显的临床癫痫发作。据报道,出生时枕额周长正常,但 10 名患儿中有 7 名患有进行性出生后小头畸形。神经放射学特征包括与枕额周长相比脑容量相对保留、特征性狭窄(有时呈“裂缝状”)侧脑室和胼胝体异常。缺乏 SLC4A10 的 Slc4a10 − / − 小鼠也表现出较小的侧脑室和轻微的行为异常,包括适应延迟和双物体新物体识别任务的改变。Slc4a10 − / − 小鼠和患儿的脑室塌陷表明 SLC4A10 在脑脊液的产生中起着重要作用。然而,值得注意的是,尽管脑脊液在发育和成人大脑中发挥着不同的作用,Slc4a10 − / − 小鼠的皮层看起来总体上是完整的。与突触标记物的共染色表明,在神经元中,SLC4A10 定位于抑制性而非兴奋性的前睡前小睡。这些发现得到了我们的功能研究的支持,这些研究显示在 Slc4a10 − / − 小鼠中抑制性神经递质 GABA 的释放受到损害,而兴奋性神经递质谷氨酸的释放得以保留。操纵细胞内 pH 值可部分挽救 GABA 的释放。我们的研究共同定义了一种与 SLC4A10 中的双等位基因致病变异相关的新型神经发育障碍,并强调了进一步分析 SLC4A10 功能丧失对大脑发育、突触传递和网络特性的影响的重要性。