摘要 —EEG 信号是复杂的低频信号。因此,它们很容易受到外界因素的影响。EEG 伪影去除在神经科学中至关重要,因为伪影会对 EEG 分析结果产生重大影响。在这些伪影中,眼部伪影的去除最具挑战性。在本研究中,通过开发基于双向长短期记忆 (BiLSTM) 的深度学习 (DL) 模型,提出了一种新颖的眼部伪影去除方法。我们通过结合 EEGdenoiseNet 和 DEAP 数据集创建了一个基准数据集来训练和测试所提出的 DL 模型。我们还通过在不同 SNR 水平下用 EOG 污染地面真实干净的 EEG 信号来增强数据。然后使用通过小波同步压缩变换 (WSST) 获得的高度局部化时频 (TF) 系数将 BiLSTM 网络馈送到从增强信号中提取的特征。我们还将基于 WSST 的 DL 模型结果与传统 TF 分析 (TFA) 方法,即短时傅里叶变换 (STFT) 和连续小波变换 (CWT) 以及增强原始信号进行了比较。首次提出的基于 BiLSTM 的 WSST-Net 模型获得了 0.3066 的最佳平均 MSE 值。我们的结果表明,与传统 TF 和原始信号方法相比,WSST-Net 模型显著提高了伪影去除性能。此外,所提出的 EOG 去除方法表明,它优于文献中许多传统和基于 DL 的眼部伪影去除方法。索引词 —EEG、眼部伪影、深度学习、LSTM、BiLSTM、WSST、STFT、CWT。
摘要:研究人员可以通过研究在现实环境中运动的人类来提高大脑研究的生态效度。最近的研究表明,双层脑电图可以提高步态过程中脑电皮层记录的保真度,但目前尚不清楚这些积极结果是否可以推广到非运动范式。在我们的研究中,我们在参与者打乒乓球时用双层脑电图记录大脑活动,乒乓球是一项全身反应性运动,可以帮助研究视觉运动反馈、物体拦截和表现监控。我们用时频分析和相关头皮和参考噪声数据来表征伪影,以确定不同传感器捕获伪影的效果。正如预期的那样,单个头皮通道与噪声匹配通道时间序列的相关性高于与头部和身体加速度的相关性。然后,我们比较了使用和不使用双层噪声电极的伪影去除方法。独立成分分析将通道分成多个成分,我们根据偶极子模型的拟合并使用自动标记算法来计算高质量大脑成分的数量。我们发现使用噪声电极进行数据处理可以提供更清晰的大脑成分。这些结果推动了记录需要全身运动的人类行为中高保真大脑动态的技术方法,这将对脑科学研究大有裨益。
纤维束成像广泛用于通过扩散加权磁共振成像 (dMRI) 在体内非侵入性地绘制白质束。与所有科学方法一样,无论是在基础神经科学领域还是在临床环境中,适当的验证都是成功应用纤维束成像的关键先决条件。众所周知,从局部扩散信号间接估计纤维束非常模糊且极具挑战性。此外,纤维束成像方法的验证因缺乏真实的基础事实而受到阻碍,这是由极其复杂的大脑微结构造成的,这种微结构无法通过非侵入性直接观察到,而大脑中庞大的长距离纤维连接网络的基础正是纤维束成像方法的实际目标。作为可用于验证的真实基础事实的体内数据的替代品,一种广泛且成功采用的方法是使用合成幻影。在这项工作中,我们概述了物理和数字幻影领域的最新技术,回答了以下指导性问题:“什么是 dMRI 幻影,它们有什么用处?”,“用于验证纤维束成像的理想幻影是什么样的?”和“研究界可以使用哪些幻影、幻影数据集和用于创建它们的工具?”。我们将进一步讨论使用 dMRI 幻影的局限性和机遇,以及该研究领域未来可能的发展方向。
缩写:FCN = 完全卷积神经网络;MSE = 均方误差;SSIM = 结构相似性指数在 MRI 检查期间,患者运动会导致伪影,而伪影是临床实践中造成图像质量下降的常见原因,据报道,这会影响 10% – 42% 的脑部检查的图像质量。1、2 在图像采集时可能会识别出对 MRI 检查诊断价值有重大影响的运动伪影,导致近 20% 的 MRI 检查出现重复序列。1、3 这些重复序列会给放射科带来大量的时间和财务成本。1 由于无法保证患者在重复序列期间能够更好地保持静止,因此图像的诊断价值往往会受到影响。
深度学习的语音增强已取得了显着的进步。然而,诸如语音扭曲和伪像之类的挑战仍然存在。这些问题可以降低听觉质量和语音识别系统的准确性,这在采用轻量级模型时尤其。因此,本文研究了管理语音失真和伪像的基本原则,并引入了一种新颖的组合损失函数,该函数整合了语音活动检测(VAD)信息和语音连续性以解决问题。此外,基于提出的损失功能设计了一种新的培训策略,以解决训练极小模型上这种综合损失的困难。实验 - 我们的方法对DNS2020数据集的有效性和实际会议数据在增强主观和objective语音指标以及自动语音识别(ASR)性能方面的有效性。索引术语:言语增强,损失功能,语音差异,光谱中断,伪影
摘要:科学和技术的持续发展需要在越来越高的空间分辨率下进行温度测量。具有温度敏感发光的纳米晶体是提供高精度和远程读取的这些应用的流行温度计。在这里,我们证明了比率发光热实验可能会遭受纳米结构环境中的系统误差。我们将基于灯笼的发光纳米热计处于距AU表面高达600 nm的控制距离。尽管这种几何形状不支持吸收或散射谐振,但由于光态的变化密度变化导致温度计的变形导致高达250 K的温度读出误差。我们的简单分析模型解释了温度计发射频率,实验设备以及误差幅度的样品的效果。我们在几种实验场景中讨论了我们发现的相关性。这种错误并不总是发生,但是在反映界面或散射对象附近的测量中可以预期它们。关键字:光子学,光态的密度,温度传感,纳米晶,灯笼的发射
刘仲民,杨富君,胡文瑾 .多尺度特征交互的伪标签无监督域自适应行人重识别 [J].光电工程, 2025 , 52 (1): 240238 Liu Z M, Yang F J, Hu W J. Multi-scale feature interaction pseudo-label unsupervised domain adaptation for person re- identification[J].Opto-Electron Eng , 2025, 52 (1): 240238
摘要 — 由于迭代矩阵乘法或梯度计算,机器学习模块通常需要大量的处理能力和内存。因此,它们通常不适用于处理能力和内存有限的可穿戴设备。在本研究中,我们提出了一种用于功能性近红外光谱 (fNIRS) 系统的超低功耗、基于实时机器学习的运动伪影检测模块。我们实现了 97.42% 的高分类准确率、38 354 个查找表和 6024 个触发器的低现场可编程门阵列 (FPGA) 资源利用率以及 0.021 W 的动态功耗。这些结果优于传统的 CPU 支持向量机 (SVM) 方法和其他最先进的 SVM 实现。这项研究表明,可以利用基于 FPGA 的 fNIRS 运动伪影分类器,同时满足低功耗和资源限制,这在嵌入式硬件系统中至关重要,同时保持高分类准确率。
尽管多年来FNIRS技术得到了改进,但FNIRS数据集的处理仍然是一项艰巨的任务。尤其是,由于Optodes和Scalp之间的耦合变化而导致的运动伪影识别并纠正并纠正了很难且耗时。此类伪影表示为时间序列信号中的峰值或偏移。由于峰或移位的幅度通常比血液动力学反应功能(HRF)高得多,因此FNIRS信号被显着污染,并且不会反映皮质激活。当头部和四肢的运动在实验方案中不可避免甚至需要时,这种现象就会更明显,例如语音,17个步行,18和手术任务。11,12最近,由于可穿戴或无线FNIRS设备(19,20)的升高,该问题加剧了这些设备的移动范围,用于跑步或团队工作,这些设备更容易受到运动文物的影响。因此,消除运动伪影的有效方法对于在这些情况下利用FNIR是必不可少的。多年来开发的一些策略包括在数据处理过程中保留任何具有运动伪像的试验。仅当收集大型数据集并且不是当前的主要实践时才使用。另一种策略是通过视觉检查识别具有运动伪影的试验/通道,或在普遍的FNIRS数据处理工具箱Homer2中使用诸如HMRMotionArtifact功能之类的功能,然后从进一步分析中丢弃它们。为例,参考。35最近的研究36不过,最合适的方法是使用高级时间序列数据处理方法处理这些试验/通道。这些包括样条插值,21小波滤波,22个主成分分析(PCA),23 Kalman滤波,24和基于相关的信号改进(CBSI)。25这些方法的性能在很大程度上取决于一组假设,以描述运动伪影和参数相关调整的主观选择(表1)。29证明,选择PCA参数,即PCA删除27为0.80和0.97的数据中的方差百分比产生了显着不同的结果。因此,高度可取的方法,不需要对参数的主观微调或不依赖严格的假设的方法。在这里,我们提出了一种自动学习噪声特征的深度学习方法。在过去十年中,深度神经网络已成为一种强大的工具,可以快速有效地抑制图像数据集中的噪声。深度学习模型已被证明可以增强竞争性降解结果,同时与召开方法相比,保留了更多纹理细节。30 - 33深度学习网络在应用于医学成像问题时也表现出卓越的性能。例如,denoising自动编码器(DAE)模型可以Denoise乳房X线照片[结构相似性指数量度(SSIM)从0.45到0.73]和Dental X射线数据(SSIM从0.62到0.86)。34 A DAE模型的峰值信噪比(PSNR)和SSIM高10%,而SSIM比胸部辐射图中的常规算法高。
功能性近红外光谱 (fNIRS) 是一种新兴的非侵入式脑机接口 (BCI) 技术。快速获取精确的脑信号对于成功的 BCI 至关重要。本文研究了一种实时滤波技术,以消除 fNIRS 信号中的运动伪影 (MA) 和低频漂移。使用文献中的气球模型和实验范例生成两种波长的光强度。生成两种类型的 MA(尖峰状和阶梯状)和低频漂移,并将其添加到模拟的两种波长的光强度中。提出了一种新的双级中值滤波器 (DSMF) 来恢复未受污染的信号。使用五个评估指标来确定双滤波器的最佳窗口大小:第一个中值滤波器为 4 s 和 9 s,第二个中值滤波器为 18 s。使用相同的指标将所提出的方法与基于小波的 MA 校正方法和样条插值方法进行了比较。结果表明,所提方法在衰减 MA 和信号失真方面优于比较方法。最后,将设计的 DSMF 应用于来自八名健康受试者的实验数据,其中通过要求受试者摇头来引入 MA。所提方法的滤波数据显示信号干净,没有 MA 和低频漂移。