1. 厦门大学医学院肿瘤研究中心,厦门 361102。2. 香港中文大学理工学院,深圳市创新药物合成重点实验室,深圳 518172。3. 杜克大学 Thomas Lord 机械工程与材料科学系,北卡罗来纳州达勒姆 27708,美国。4. 广东药科大学第一附属医院,广州 510026。5. 加利福尼亚大学环境毒理学系,加利福尼亚州河滨市 92507,美国。6. 福建医科大学基础医学院免疫治疗研究所,福州 350122。7. 厦门大学医学中心附属翔安医院消化内科、妇产科,厦门 361000。 8. 山东第一医科大学附属省立医院麻醉科,山东济南 250021。
传感技术的进步可以从制造系统中收集有效的数据来监视和控制。此外,随着物联网(IoT)和信息技术的快速发展,越来越多的制造系统变得启用了网络,从而有助于实时数据共享和信息交流,从而显着提高了制造系统的功能和效率。但是,支持网络的环境可能会在数据和信息共享过程中构成具有网络物理攻击风险高的传感器数据。指定的是,网络物理攻击可以针对制造过程和/或数据传输过程,以使传感器数据恶意篡改传感器数据,从而导致错误警报或监测中异常检测的失败。此外,网络物理攻击也可以在无授权的情况下实现非法数据访问并导致关键产品/过程信息的泄漏。因此,开发一种有效的方法来保护数据免受这些攻击的影响至关重要,以便可以在支持网络的环境中确保制造系统的网络物理安全性。为了实现这一目标,本文提出了一种综合区块链启用的数据保护方法,该方法利用了凸轮的不对称加密。提出了一项现实世界中的案例研究,该案例研究介绍了添加剂制造中收集的传感器数据的网络物理安全性,以证明该方法的有效性。[doi:10.1115/1.4063859]结果表明,可以在相对较短的时间内检测到恶意篡改(小于0.05 ms),并且未经授权的数据访问的风险也大大降低。
a 深圳大学总医院卡森国际肿瘤中心普通外科、消化系统肿瘤精准诊疗研究所,广东深圳 518055 b 深圳大学医学院生物医学工程学院、广东省生物医学测量与超声成像重点实验室、医学超声国家地方重点技术工程实验室,广东深圳 518060 c 国际肿瘤诊疗协会,广东深圳 518055 d 深圳大学医学院药学院,广东深圳 518060 e 山东中医药大学药学院,山东济南 250000 f 山东省第一医科大学、山东省医学科学院山东省肿瘤医院暨研究所放射肿瘤科,山东济南 250000 g 开罗大学兽医学院药理学系,12211埃及吉萨 h 土耳其埃尔祖鲁姆 25070 阿塔图尔克大学医学院医学药理学系 i 德国罗斯托克大学医学中心普通外科、分子肿瘤学和免疫治疗诊所 j 香港理工大学卫生科技及信息学系,香港特别行政区 999077,中国 k 中山大学附属第七医院肿瘤科,广东深圳 518107,中国
在体外通过T7 RNA聚合酶在体外进行转录是最广泛使用的方法,用于生产用于多种应用的RNA,包括结构和生化研究以及潜在的治疗学(Mil- Liligan等,1987; Turek&gold,1990; Symensma等,1996; Siegel et al +,1996; ity of the T7 polymerase products and necessitate the careful purification of the desired RNAs + These reac- tions include the synthesis of oligonucleotides aborted during the initiation of transcription (Martin et al +, 1988 ; Moroney & Piccirilli , 1991) , polymerase slippage (Mac- Donald et al +, 1993) , the use of alternative template initiation sites (Pleiss et al +, 1998; Krupp,1988) +以前,Moran等人(1996)证明了DNA模板