众所周知,几乎所有半导体器件的制造工艺路线都伴随着各种低温和高温处理循环,这不可避免地会导致各种缺陷的形成,并对硅缺陷结构的发展和为改变半导体材料性能而引入的杂质形成的深中心(DC)的形成产生重大影响(Abdurakhmanov等人,2019年;Utamuradova等人,2006年;Utamuradova等人,2023年)。在生产各种结构和器件的半导体晶片的技术加工过程中,缺陷之间会发生各种相互作用,这些相互作用主要由晶格中具有最大迁移率的点缺陷决定(Normuradov等人,2022年;Turgunov等人,2020年)。晶体中的点缺陷是各种掺杂不受控制的技术杂质,它们既存在于间隙位置,也存在于替代位置,以及结构晶格缺陷 - 弗伦克尔对、空位和间隙原子。结构
30肯定选择了Cho-M Cell Lines™,每种都会选择不同类型的重组蛋白。可行的细胞浓度(VCC)和细胞活力,以跟踪培养物的生长性能。然后,使用拉曼光谱法分析了每种培养的样品。与VI细胞BLU参考方法不同,与自动化液体处理系统相连的拉曼光谱设置消除了对消耗品(试剂)的需求,并允许进行全自动的采样和数据收集分析。
对293至1850 K的天然IIA钻石中一阶Rarnan光谱的测量。stokes和抗烟分量的组件都因其强度,拉曼的偏移和宽度而随温度而变化。光膜测量法用于进行温度测量值,其结果是由Stokes独立确认的 - 抗Stokes强度比。随着温度的变化和宽度变化与C. Z. Wang,C。T。Chan和K. M. Ho的分子动力学模拟一般一致。修订版b 42,11 276 {19901]。可以将样品加热到高达1850 K的真空中的温度,而无需任何有多态性转化为石墨的迹象,这也与先前的研究一致。使用CRN'和绝对温度的单位,我们的实验一阶拉曼移动可方便地表示为AV = a,t'+a,t+a,其系数为-1。075x10'cm'K', - 0。00777 cm'K'和1334。5 cm'。
聚类是算法中的一个重要主题,在机器学习、计算机视觉、统计学和其他几个研究学科中有着广泛的应用。图聚类的传统目标是找到具有低电导性的聚类。这些目标不仅适用于无向图,而且无法考虑聚类之间的关系,而这对于许多应用来说可能是至关重要的。为了克服这些缺点,我们研究了有向图(有向图),其聚类彼此之间展示了更多的“结构”信息。基于有向图的 Hermitian 矩阵表示,我们提出了一种近线性时间的有向图聚类算法,并进一步表明我们提出的算法可以在合理的假设下以亚线性时间实现。我们的理论工作的意义通过对联合国商品贸易统计数据集的大量实验结果得到证明:我们算法的输出聚类不仅展示了聚类(国家集合)在进出口记录方面如何相互关联,还展示了这些聚类如何随着时间的推移而演变,这与已知的国际贸易事实一致。
目的:微管疾病代表由微管蛋白基因中的变异引起的一组疾病,这些疾病具有广泛的脑畸形。进行了这项研究是为了洞悉韩国小儿种群中微调蛋白质的表型和遗传光谱。方法:在2011年6月和2021年12月在儿科神经病学诊所进行基因检测的个体中,回顾了15例微管蛋白基因变异的患者。临床特征,遗传信息和大脑成像发现进行了回顾性回顾。结果:患者的遗传光谱包括TUBA1A(n = 5,33.3%),tubb4a(n = 6,40.0%),tubb3(n = 2,13.3%),tubb(n = 1,6.7%)和tubb2a(n = 1,6.7%)。确定了两个新型突变:A c.497a> g; p。(lys166arg)tuba1a中的变体和c.907g> c; p。(ALA303PRO)TUBB中的变体。所有15名患者均表现出发育延迟,严重程度广泛。其他共同的表现包括小头畸形(n = 10; 66.7%)和sei Zures(n = 9; 60%)。对神经影像数据的综述揭示了一系列基因型特异性和基因型重叠的发现。在TUBA1A突变(n = 5)的情况下,四名患者(80%)出现了pachygyria和Polymicrogyria,而三名(60%)的患者表现出Cere Bellar发育不全和发育不良。所有TUBB4A变异的患者(n = 6)均表现出低霉素的症状,三名(50%)均患有小脑发育不良。结论:这项研究代表了韩国小儿种群中与微管蛋白质病有关的微管蛋白基因突变的首次队列分析。表明,这些突变可以促进各种神经发育和神经影像学发现,应在相关临床方面的鉴别诊断中考虑。
©2021作者。本文是根据创造性的共识4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适合原始作者和来源的信誉,就可以提供与创建者许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的Creative Commons许可中,除非在材料的信用额度中另有指示。如果材料未包含在Thearticle的Creative Commons许可中,并且您的预期用途不允许法定调制或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
最近的研究表明,能够记录患有半晶状体切除术的脑外伤(TBI)患者的脑电图(EEG)中高γ信号(80-160 Hz)。然而,由于与面部和头部运动相关的表面肌电图(EMG)伪影的混淆带宽重叠,因此提取与运动相关的高γ仍然具有挑战性。在我们以前的工作中,我们描述了一种增强的独立组件分析(ICA)方法,用于从EEG中删除EMG伪像,并通过添加EMG来源(ERASE)称为EMG降低。在这里,我们对六名Hemicraniectomies患者记录的EEG测试了该算法,同时他们执行了拇指流失任务。删除的平均值为52±12%(平均±S.E.M)(最大73%)EMG伪影。相比之下,常规ICA从EEG中删除了EMG伪像的平均值为27±19%(平均值±S.E.M)。尤其是,在擦除擦除后,在半晶切除术中的对侧手运动皮层区域中,高γ同步显着改善。更复杂的高γ复杂性是分形维度(FD)。在这里,我们在每个通道上计算了EEG高γ的FD。高γ的相对FD定义为移动状态下的FD在空闲状态下减去FD。我们发现,施加擦除后,高γ的相对FD与半骨切除术相对于半晶状分裂术,与纤维流量的振幅密切相关。的结果表明,与拇指流量相关的电极上的显着相关系数平均为〜0.76,而非流行性辐射切除术区域的同源电极的系数接近0。在常规ICA之后,在两个半开裂区域(最高0.86)和非流行颅切除术区域(最高0.81)中,高γ和力之间的相对FD之间的相关性均保持较高。在所有受试者中,使用擦除后,平均83%的电极与力显着相关。常规ICA后,只有19%的具有显着相关性的电极位于半晶切除术中。
摘要 — 在癫痫监测中,由于脑电图伪影在幅度和频率上具有形态相似性,因此经常被误认为是癫痫发作,这使得癫痫发作检测系统容易受到更高的误报率的影响。在这项工作中,我们介绍了一种基于并行超低功耗 (PULP) 嵌入式平台上最少数量的脑电图通道的伪影检测算法的实现。分析基于 TUH 脑电图伪影语料库数据集,并重点关注颞电极。首先,我们使用自动机器学习框架在频域中提取最佳特征模型,在 4 个颞脑电图通道设置下实现了 93.95% 的准确率和 0.838 F1 得分。所实现的准确率水平比最先进的水平高出近 20%。然后,这些算法针对 PULP 平台进行并行化和优化,与最先进的低功耗伪影检测框架实现相比,能效提高了 5.21 倍。将此模型与低功耗癫痫发作检测算法相结合,可以在可穿戴外形尺寸和功率预算下使用 300 mAh 电池进行 300 小时的连续监测。这些结果为实现经济实惠、可穿戴、长期癫痫监测解决方案铺平了道路,该解决方案具有低假阳性率和高灵敏度,可满足患者和护理人员的要求。临床意义——所提出的 EEG 伪影检测框架可用于可穿戴 EEG 记录设备,结合基于 EEG 的癫痫发作检测算法,以提高癫痫发作检测场景的稳健性。索引词——医疗保健、时间序列分类、智能边缘计算、机器学习、深度学习
量子伪随机性已应用于量子信息的许多领域,从纠缠理论到混沌量子系统中的扰乱现象模型,以及最近的量子密码学基础。Kretschmer (TQC '21) 表明,即使在没有经典单向函数的世界中,伪随机态和伪随机幺正态也存在。然而,时至今日,所有已知的构造都需要经典的密码构造块,而这些构造块本身就等同于单向函数的存在,并且在现实的量子硬件上实现也具有挑战性。在这项工作中,我们寻求同时在这两个方面取得进展——将量子伪随机性与经典密码学完全分离。我们引入了一个称为哈密顿相态 (HPS) 问题的量子硬度假设,该任务是解码随机瞬时量子多项式时间 (IQP) 电路的输出状态。仅使用 Hadamard 门、单量子比特 Z 旋转和 CNOT 电路即可非常高效地生成哈密顿相态。我们证明了问题的难度降低为问题的最坏情况版本,并且我们提供了证据证明我们的假设可能是完全量子的;这意味着,它不能用于构造单向函数。通过证明我们集合的近似 t 设计属性,我们还展示了当只有少量 HPS 副本可用时的信息论难度。最后,我们表明我们的 HPS 假设及其变体使我们能够有效地构造许多伪随机量子原语,从伪随机态到量子伪纠缠,再到伪随机幺正,甚至包括使用量子密钥的公钥加密等原语。在此过程中,我们分析了一种伪随机幺正的自然迭代构造,它类似于 Ji、Liu 和 Song (CRYPTO'18) 的候选者。