在 Fritz Haber 的基础研究工作的基础上,Carl Bosch 及其工程团队利用 Alwin Mittasch 及其同事发现的经过改进的铁基催化剂,将氨合成技术发展到了技术可操作性。从那时起,合成反应本身并没有发生根本性的变化。即使在今天,每家工厂的基本配置都与第一家工厂相同。氢氮混合物在 400 – 500 °C 的高温(最初高达 600 °C)下在铁催化剂上发生反应,操作压力高于 100 bar,在除去所形成的氨后,未转化的合成气部分被再循环,并补充新鲜的合成气以补偿转化为氨的氮和氢的量。
图 1:A. 典型的传统甲烷供料哈伯-博施工艺和 B. 电力替代工艺的示意图。为了便于说明,将氢气和氨气生产阶段分开,以识别两种技术之间的相似点和不同点。黄线为工艺气体,深蓝线为水/蒸汽,浅蓝线为空气,紫线为氨气,虚线为电力。
药物 1 药物 2 药物 3 依米丁 法匹拉韦 卡莫司他 去氢依米丁 利托那韦* 伯氨喹 洛匹那韦* 羟氯喹 阿托伐醌 利托那韦* 阿利泊韦 乌米芬诺韦 鲁平曲韦 卡莫司他 格里菲辛 三氮唑核苷 沙奎那韦 瑞德西韦 羟氯喹 法匹拉韦 利托那韦* 卡莫司他 瑞德西韦 利托那韦* 茚地那韦 瑞德西韦 鲁平曲韦 法匹拉韦 奥司他韦 伯氨喹 依米丁 洛匹那韦* 阿托伐醌 去氢依米丁 阿利泊韦 法匹拉韦 洛匹那韦* 乌米芬诺韦 强力霉素 利托那韦* 三氮唑核苷 瑞德西韦 阿利泊韦 茚地那韦 格里菲辛 羟氯喹 瑞德西韦 沙奎那韦 卡莫司他 法匹拉韦 鲁平曲韦 卡莫司他奥司他韦 利托那韦* 沙奎那韦 法匹拉韦 利托那韦* 瑞德西韦 格里菲辛 伯氨喹 注:* 在这种情况下可以使用 Kaletra(洛匹那韦/利托那韦组合)
作为几个家伙(Eikeng and Rogneby,2021),他曾经引用过另一个人(Bob Dylan,1963年),他们写道,他们是A-changin'。确实是。世界目前正在进行重大清理,脱碳在议程之上。在这方面,绿色氨的大规模生产用于替代常规化石氨的氨近期引起了人们的兴趣。今天的氨目前负责全球CO 2排放量的1%,几乎所有氨用于肥料的产生。用绿色氨取代基于化石燃料的氨,从空气,水和可再生能源中合成,可能会大大减少发射。除了清理肥料工业外,绿色氨还具有随着时间的推移(能量存储)和空间(能量传递)(能量转移)的系统能量平衡的潜力,因此有可能成为从化石燃料到可再生能源的全球能源过渡的重要组成部分。
一项 III 期双盲随机对照试验 (RCT) (FRESCO-2;N = 691) 表明,对于先前接受过标准化疗、抗 VEGF 药物和抗 EGFR 药物(如果是 RAS 野生型)治疗,并且在接受曲氟尿苷-替吡嘧啶或瑞戈非尼治疗后病情进展或不耐受的 mCRC 成人患者,与安慰剂加 BSC 相比,接受呋喹替尼加最佳支持治疗 (BSC) 治疗可使总生存期 (OS) 和无进展生存期 (PFS) 获得统计学上显着且具有临床意义的改善。呋喹替尼联合 BSC 组的中位 OS 为 7.4 个月(95% 置信区间 [CI],6.7 至 8.2 个月),安慰剂联合 BSC 组的中位 OS 为 4.8 个月(95% CI,4.0 至 5.8 个月),风险比 (HR) 为 0.66(95% CI,0.55 至 0.80;P < 0.001)。呋喹替尼联合 BSC 组的中位 PFS 为 3.7 个月(95% CI,3.5 至 3.8 个月),安慰剂联合 BSC 组的中位 PFS 为 1.8 个月(95% CI,1.8 至 1.9 个月),HR 为 0.32(95% CI,0.27 至 0.39;P < 0.001)。与安慰剂加 BSC 相比,呋喹替尼加 BSC 的 3 级或以上副作用(包括手足综合征和高血压)发生率更高。尽管如此,pERC 认为呋喹替尼的安全性与已知的 VEGF 受体抑制剂的安全性一致。
本文采用两种方法来评估灵活性在绿色氨工厂中的作用:用于工厂设计的线性规划 (LP) 和用于工厂运行的模型预测控制 (MPC)。前一种方法已用于其他绿色氨生产分析,11 – 15 尽管本文提出了一种修改方法来确定存储单元的循环对氨价格的影响程度,并给出了新的灵敏度结果。后一种 MPC 方法在孤岛绿色氨工厂中的应用是新颖的,并且为 LP 提供的结果设置了保护栏。MPC 的目的不是设计专门确定氨工厂运行参数(温度、压力、进料比等)的控制回路;相反,MPC 的目的是作为一种确定氨工厂设定点的算法。换句话说,这里介绍的 MPC 类似于级联控制布置中的主回路,决定电力分配和氨产量。对于这两个模型,天气数据均来自 ERA5,并使用标准涡轮机曲线 13 和 Python 上的 PVLib 模块转换为风能和太阳能数据。16
简而言之,绿氢是利用可再生能源将水分解成氢和氧而产生的。燃烧时只会排放水,但生产氢气的成本可能很高。绿氨由绿氢制成,该过程也由可再生能源提供动力。生产绿氢和绿氨对环境和社会有积极和消极的影响。绿氢(见表 14.1)被视为全球向可持续能源和净零排放经济转型的关键推动因素。开发绿氢作为清洁能源解决方案的势头日益增强。它正在成为一种储存可再生能源的主要选择(其他能源储存选择另见第 13 章),氢基燃料可以长距离运输——从能源资源丰富的地区运输到数千公里外的能源匮乏地区。作为一种液体燃料,以绿色氢为原料的绿氨作为运输媒介具有许多优势。在联合国气候大会 COP26 上,绿色氢能被列为多项减排承诺的一部分,作为重工业脱碳的手段,并可作为长途货运、船运和航空燃料。各国政府和工业界都承认氢能是净零经济的重要支柱 1。联合国旨在降低绿色氢能成本的倡议“绿色氢能弹射器”宣布,其绿色电解槽目标将从 2020 年设定的 25 吉瓦增加近一倍,达到 2027 年的 45 吉瓦。欧盟委员会通过了一系列立法提案,旨在通过促进氢气等可再生和低碳气体的使用来实现欧盟天然气市场的脱碳,并确保所有欧洲公民的能源安全。阿拉伯联合酋长国的新氢能战略旨在到 2030 年占据全球低碳氢能市场的四分之一。最近,日本宣布将从其绿色创新基金中投资 34 亿美元,用于加速绿色氢能的研发和推广。未来 10 年氢气的使用情况 2 。预计到 2040 年,鉴于可再生能源规模扩大、成本降低,以及生产棕色、灰色和蓝色氢气的成本增加,绿色或低碳氢气将具有成本竞争力 3 。来自核能的粉红氢气是未来氢气生产的另一种选择 4 。绿色氨的生产被推广为向净零二氧化碳排放过渡的另一种选择。它在这方面的用途包括:
氨氧化古细菌(AOA)是微生物群落的无处不在成分,并在某些土壤中占据了硝化的第一阶段。当我们开始了解土壤病毒动力学时,我们对那些感染硝基菌的人的组成或活性或其影响过程的潜力不了解。这项研究旨在表征在两种硝化pH的硝化土壤中感染自身噬菌AOA的病毒,这是通过通过DNA稳定的异位素探测和化合物分析转移了同化的CO 2衍生的13 C从宿主到病毒的13 C。将13 C掺入低GC MOL%AOA中,病毒基因组增加了CSCL梯度中的DNA浮力密度,但导致与富含非增强的高GC MOL%基因组共同移民,减少了测序depth和Contig组装。因此,我们开发了一种杂种方法,其中AOA和病毒基因组是从低浮力DNA组装而成的,随后映射13 C同位素富集的高浮力密度DNA读取以识别AOA的活性。元基因组组装的基因组在两种土壤之间是不同的,并且代表了广泛的活性种群。识别64个AOA感染病毒运营分类单元(投票),与先前特征的原核生物病毒没有明确的相关性。这些投票在土壤之间也有所不同,其中42%的富含宿主的13 C富集。大多数人被预测为能够溶裂性,辅助代谢基因包括一种AOA特异性多孔氧化酶,表明感染可能会增强对中央代谢功能所必需的铜摄取。这些发现表明AOA的病毒感染可能是硝化过程中经常发生的过程,可能会影响宿主生理和活性。
氨扩建项目是一项在 CSBP 有限公司的奎那那工业园区 (CSBP Kwinana) 内建造和运营新氨厂 (氨厂 3 或 AP3) 的提案。CSBP Kwinana 位于奎那那工业区 (KIA),距离西澳大利亚 (WA) 珀斯以南约 40 公里 (km)。该提案的提议者是 CSBP 有限公司。该提案将使用来自丹皮尔至班伯里天然气管道 (DBNGP) 的天然气,结合 10 兆瓦 (MW) 电解器的氢气生产来制造氨,供 CSBP 用于制造其他化学产品或对外出售给客户。该提案包括一个自给自足的设施,生产能力约为每年 300,000 吨 (tpa)。该提案涉及清除 27.52 公顷 (ha) 开发范围内不到一公顷的再生原生植被。