图2:从基于物理的电池模型中检索的特征的SOH估计方法。这些技术的缩写项是库仑计数(CC),电化学阻抗光谱(EIS),开路电压(OCV),Kalman滤波器及其扩展(KF)和遗传算法(GA)。
和许多研究领域的情况一样,脑机接口 (BCI) 领域数据共享仍然很少,尤其是在被动 BCI 领域——即基于从脑部测量估计的用户心理状态实现隐性交互或任务调整的系统。此外,该领域的研究目前面临一个重大挑战,即解决脑信号变异性,例如跨会话变异性。因此,为了在该领域发展良好的研究实践,并使整个社区能够联合起来进行跨会话估计,我们创建了第一个关于跨会话工作量估计的被动脑机接口竞赛。本次竞赛是第三届国际神经人体工程学会议的一部分。数据是从 15 名志愿者(6 名女性;平均 25 岁)获得的脑电图记录,他们进行了 3 次多属性任务组合 II (MATB-II) 测试,每次测试间隔 7 天,每场测试有 3 个难度级别(伪随机顺序)。数据(训练和测试集)与 Matlab 和 Python 玩具代码一起在 Zenodo 上公开提供(https://doi.org/10.5281/zenodo.5055046)。到目前为止,该数据库的下载次数已超过 900 次(2021 年 12 月 10 日所有版本的独立下载次数:911)。来自 3 大洲的 11 个团队(31 名参与者)提交了他们的作品。表现最好的处理流程包括基于黎曼几何的方法。虽然结果优于调整后的随机水平(对于 3 类分类问题,α 为 0.05,结果为 38%),但准确率仍然低于 60%。这些结果清楚地强调了跨会话估计的真正挑战。此外,它们再次证实了黎曼方法对 BCI 的稳健性和有效性。相反,三分之一的方法(4 个团队)基于深度学习获得了随机水平结果。与传统方法相比,这些方法在本次比赛中没有表现出更优的结果,这可能是由于严重的过度拟合。然而,这次比赛是共同努力解决 BCI 变异性并促进包括可重复性在内的良好研究实践的第一步。
抽象的经常性事件,其特征是在个人研究中反复发生同一事件,是医学研究中的一种常见数据。是出于癌症的促进,我们旨在估算有效减轻此类复发事件的最佳个性化治疗方案(ITR)。ITR是一项决策规则,它根据个性化信息将最佳治疗方法分配给每个患者,以最大程度地提高整体治疗益处。但是,现有的估计ITR的研究主要集中于初次事件,而不是经常发生的事件。要解决重复事件的最佳ITR的问题,我们提出了经常性的C-学习方法(RECL)方法,以从两个或多个处理选项中识别最佳ITR。所提出的方法将优化问题重新定义为加权分类问题。我们介绍了三个错误分类成本的估计器:结果回归估计器,逆概率加权估计器以及增强的反概率加权估计器。RECL方法利用分类技术来生成针对经常性事件数据量身定制的可解释的最佳ITR。在各种情况下通过模拟证明了RECL方法的优点。此外,基于关于结直肠癌治疗的实际数据,我们采用了这种新颖的方法来得出结直肠癌的可解释的树木治疗方案,从而为增强治疗策略提供了实用的框架。
给定一个随机子空间H n在Hilbert Space的张量中均匀地选择了v n w w,我们认为相对于张量结构,H n h n元素的所有单数值的集合k n。在WIFED的背景下,该随机集获得了大量定律,并且在[3]中以相同的速度以相同的速度倾向于h n,v n的尺寸。在本文中,我们提供了衡量浓度估计值。K n的概率研究是由量子信息理论中重要问题的动机,并允许为尺寸提供最小的已知维度(184),即一个Ancilla空间,允许最小输出熵(MOE)违规。通过我们的估计,作为应用程序,我们可以为发生MOE发生的空间的维度提供实际界限。
我们研究了计算概率分布之间统计相似性的问题。对于有限的样品空间上的分布P和Q,它们的统计相似性定义为S Stat(P,Q):= P X Min(p(x),q(x))。统计相似性是分布之间相似性的基本量度,具有几种自然解释,并捕获了预测和假设测试问题中的贝叶斯错误。最近的工作已经确定,有些令人惊讶的是,即使对于简单的产品分布,精确的计算统计相似性也是#p -hard。这激发了设计统计相似性的近似算法的问题。我们的主要贡献是用于估计两个产品分布之间统计相似性的完全多项式确定性近似方案(FPTA)。为了获得此结果,我们引入了背包问题的新变体,我们称之为“掩盖背包”问题,并设计了一个FPTA,以估算此问题的多维版本的解决方案数量。这种新的技术贡献可能具有独立的利益。此外,我们还建立了一个完全的硬度结果。我们表明,当p和q是估计统计相似性的NP -HARD是内度2的贝叶斯净分布时。
摘要。车辆集成的光伏电动机具有持续的兴趣。需要研究车辆太阳能屋顶的收益,这些研究需要考虑到所有可能的损失和不同气候条件下的每月变化。因此,我们开发了一种软件,用于模拟有用的PV能量和横向上的PV覆盖的太阳能屋顶的车辆。该软件可以考虑到车辆和光伏系统的不同使用配置文件和不同的特性。关注城市总线,模拟允许看到许多参数可以影响模型的输出,主要是:地理位置(一阶),阴影损失(二阶),电气架构(三阶)和电池饱和度(第四阶)。在车辆的中期生活,具有集成的PV(该技术的预测),城市巴士可以收集高达8571 kWh的年度有用的PV Energy,因此VIPV涵盖了每年9739 km。这代表总距离的24%。在最佳月份中,每天最多可以达到47公里。对于平均欧洲案件,造成高阴影损失的情况,城市巴士每年可以收集到3805 kWh,因此VIPV涵盖的年度里程只有3506公里。该技术从2022年到2030年的升级导致VIPV覆盖的有用的PV能源和年度里程从32%到56%,具体取决于用例。基于VIPV所涵盖的年距离,可以评估对实层车辆解决方案的生命周期分析的不同阶段。因此,没有简单的一般趋势。目的是在整个车辆的整个生命周期中了解解决方案的环境平衡。不同溶液的碳足迹高度可变,主要取决于车辆销售的电力混合物的碳含量,也取决于所考虑区域中太阳辐照度的量。尽管如此,我们得出了一些结论。具有低碳模块,对于城市巴士来说,预计避免使用CO 2的城市公交车(20年的终生)预计将避免使用CO 2(最多28 t Co 2)。
注意:请注意,此文档可能不是记录的版本(即已发布的版本)。作者手稿版本(作为同行评审或同行评审后接受的出版物接受的子手稿版本)可以通过出现出版商品牌和/或排便中的出现来确定。如果有任何疑问,请参考已发布的来源。
上午9.30的结果1:支持到2050年的澳大利亚经济向零排放的过渡;过渡能源以支持净净的零,同时保持安全性,可靠性和负担能力;支持促进适应和增强澳大利亚经济,社会和环境的韧性的行动;并在应对气候变化方面的国际领导角色。
近几十年来,基于脑电图 (EEG) 的脑机接口 (BCI) 研究已变得更加民主化 (Nam 2018)。该技术能够通过 EEG 将信息从人脑传输到机器,尤其能够帮助严重运动障碍患者向轮椅等辅助技术发送命令,例如通过想象左手或右手运动来使轮椅左转或右转。此类 BCI 被称为主动 BCI,因为用户通过执行心理意象主动向系统发送命令 (Zander 2011)。然而,BCI 缺乏稳健性限制了该技术在研究实验室之外的发展,目前 10% 到 30% 的用户无法控制主动 BCI。然而,另一种类型的 BCI 被证明特别有前景:被动 BCI (Zander 2011)。此类 BCI 不用于直接控制应用程序,而是用于实时监控用户的心理状态,以便相应地调整应用程序。请注意,被动 BCI 可以与生理信号相结合:它们被称为“混合 BCI”(Pfurtscheller 等人,2010 年)。
图3。流过一个气缸。(a)使用p = 3传感器,RL-ROE和KF-ROE状态估计值的RL-ROE和KF-ROE状态估计值的归一化L 2误差。(b)使用p = 3传感器在训练过程中未看到的RE值以及相应的RL-ROE和KF-ROE估计值的RE值的地面真相速度幅度在t = 50处。参考溶液轮廓中的黑色交叉表示传感器位置。(c)左:归一化的L 2误差,使用P = 3传感器时的μ与μ相对于μ。属于训练集S的μ值由大圆圈显示,而测试值则显示为小圆圈。右:归一化的L 2误差,随着时间的推移和RE的测试值进行平均,传感器数量p。在(a)和(c)中,误差指标在5个轨迹上平均具有随机采样的初始真实状态z 0,而阴影区域表示标准偏差。