高性能计算设备,欧洲的关键市场高性能计算是专门用于科学和工程模型的计算机科学的一个分支,以及需要如此重要资源的仿真任务,以至于无法使用计算机进行一般使用,而是对超级计算机进行计算。高性能计算对于应对数量和复杂性不断增长的战略挑战至关重要。历史上用于研究,天气预报,石油和天然气勘探,国防,化学,金融...,这对于支持人工智能,互联流动性,智能城市,生物工程,网络安全,个性化医学等的部署至关重要。
其中y t是r n值系统状态x t的r m值观察。矩阵A,B,F和G取决于θT,W t和V t是独立的白色高斯噪音。最佳的非线性估计器涉及许多随时间t呈指数增加的卡尔曼过滤器。 IMM估计器[1,2]仅涉及N KALMAN过滤器,每种模式一个。为了补偿过滤器数量的减少,在每个估计周期开始时,N Kalman过滤器的估计值之间存在一个受控的相互作用/混合。[1]正式证明了这些相互作用/混合方程是精确的,而不是近似值。在每个估计周期结束时; IMM估计器计算过滤重量(模式概率)以及总体平均值和协方差。Bar-Shalom等。[3]给出了IMM估计器及其在跟踪和导航中的应用深度解释。运动学模型的Kalman过滤器[3]是低通滤波器。在(1)中,噪声增益少,带宽较低,适合几乎恒定的速度运动。用大B,它们具有更高的带宽,并且是
对嘈杂的中型量子设备进行采样是一个基本步骤,它将相干量子电路输出转换为测量数据,以运行在成本函数优化任务中使用梯度和 Hessian 方法的变分量子算法。然而,这一步骤会在生成的梯度或 Hessian 计算中引入估计误差。为了尽量减少这些误差,我们讨论了可调数值估计器,即有限差分(包括它们的广义版本)和缩放参数移位估计器 [在 Phys. Rev. A 103, 012405 (2021) 中介绍],并提出了操作电路平均方法来优化它们。我们表明,对于给定的采样副本数,这些优化的数值估计器的估计误差会随着电路量子比特数的增加而呈指数下降,从而揭示出与荒原现象的直接兼容性。具体来说,存在一个临界采样拷贝数,低于该临界数,优化的差异估计器会给出比标准(解析)参数移位估计器更小的平均估计误差,后者精确计算梯度和 Hessian 分量。此外,这个临界数会随着电路量子比特数的增加而呈指数增长。最后,通过放弃解析性,我们证明了缩放的参数移位估计器在任何情况下的估计精度都优于标准的非缩放估计器,在显著的拷贝数范围内具有与差异估计器相当的性能,并且如果可以承受更大的拷贝数,它们是最好的。
癫痫的全脑网络建模是一种数据驱动的方法,它将个性化的解剖信息与异常大脑活动的动态模型相结合,以生成在大脑成像信号中观察到的时空癫痫发作模式。这种参数模拟器配备了一个随机生成过程,它本身为推断和预测受疾病影响的局部和整体大脑动态提供了基础。然而,全脑尺度的似然函数计算往往是难以解决的。因此,需要无似然推理算法来有效估计与大脑中假设区域有关的参数,理想情况下包括不确定性。在这项详细的研究中,我们提出了基于模拟的虚拟癫痫患者 (SBI-VEP) 模型推理,它只需要前向模拟,使我们能够摊销代表全脑癫痫模式的低维数据特征参数的后验推断。我们使用最先进的深度学习算法进行条件密度估计,通过一系列可逆变换检索参数和观测值之间的统计关系。这种方法使我们能够根据新输入数据轻松预测癫痫发作动态。我们表明,SBI-VEP 能够从颅内 EEG 信号的稀疏观测中准确估计与大脑中致痫区和传播区范围相关的参数的后验分布。所提出的贝叶斯方法可以处理非线性潜在动力学和参数退化,为从神经影像学模式可靠地预测神经系统疾病铺平了道路,这对于制定干预策略至关重要。
使用先前部署的策略记录的数据评估新的排名策略需要一个反事实(非政策)估计器,以纠正演示和选择偏见。某些估计器(例如,基于位置的模型)通过对用户行为做出有力的假设来执行此校正,如果不满足假设,这可能会导致高偏差。其他估计器(例如,项目位置模型)依靠随机化来避免这些假设,但它们通常会遭受较高的差异。在本文中,我们开发了一种称为Interpol的新的反事实估计器,该估计器在其做出的假设中提供了可调节的权衡,从而提供了优化偏见差异权衡的新颖能力。我们在理论上和经验上分析了估计量的偏差,并表明它在合成数据集上都比基于位置模型和项目位置模型的误差较低。准确性的提高不仅使排名策略的离线评估受益,而且我们还发现,当用作学习级别的培训目标时,Interpol会改善对新排名政策的学习。
摘要:基于事件相关电位 (ERP) 的 EEG 视觉脑机接口 (BCI) 的可用性得益于减少 BCI 操作前的校准时间。线性解码模型(例如时空波束形成器模型)可实现最先进的精度。尽管该模型的训练时间通常很短,但它可能需要大量的训练数据才能达到功能性能。因此,BCI 校准会话应该足够长以提供足够的训练数据。这项工作为波束形成器权重引入了两个正则化估计器。第一个估计器使用交叉验证的 L2 正则化。第二个估计器通过假设 Kronecker-Toeplitz 结构协方差来利用有关 EEG 结构的先验信息。使用包含 21 名受试者的 P300 范式记录的 BCI 数据集验证了这些估计器的性能,并将其与原始时空波束形成器和基于黎曼几何的解码器进行了比较。我们的结果表明,引入的估计器在训练数据有限的情况下条件良好,并提高了对未见数据的 ERP 分类准确性。此外,我们表明结构化正则化可以减少训练时间和内存使用量,并提高分类模型的可解释性。
摘要 - 由于独立的平台动作以及由此产生的多种惯性力量,机器人在机器人的六度移动平台(例如地铁,公共汽车,飞机和游艇)等六度移动平台上面临平衡挑战。为了减轻这些挑战,我们提出了基于学习的运动平台(LAS-MP)的主动稳定,具有自动平衡政策和系统状态估计器。策略会根据平台的运动自适应地调整机器人的姿势。估计器基于原则传感器数据推断机器人和平台状态。对于各种平台运动的系统培训方案,我们介绍了平台轨迹生成和调度方法。我们的评估表明,与三个基线相比,多个指标的卓越平衡性能。此外,我们对LAS-MP进行了详细分析,包括消融研究和评估估计器,以验证每个组件的有效性。
抽象的经常性事件,其特征是在个人研究中反复发生同一事件,是医学研究中的一种常见数据。是出于癌症的促进,我们旨在估算有效减轻此类复发事件的最佳个性化治疗方案(ITR)。ITR是一项决策规则,它根据个性化信息将最佳治疗方法分配给每个患者,以最大程度地提高整体治疗益处。但是,现有的估计ITR的研究主要集中于初次事件,而不是经常发生的事件。要解决重复事件的最佳ITR的问题,我们提出了经常性的C-学习方法(RECL)方法,以从两个或多个处理选项中识别最佳ITR。所提出的方法将优化问题重新定义为加权分类问题。我们介绍了三个错误分类成本的估计器:结果回归估计器,逆概率加权估计器以及增强的反概率加权估计器。RECL方法利用分类技术来生成针对经常性事件数据量身定制的可解释的最佳ITR。在各种情况下通过模拟证明了RECL方法的优点。此外,基于关于结直肠癌治疗的实际数据,我们采用了这种新颖的方法来得出结直肠癌的可解释的树木治疗方案,从而为增强治疗策略提供了实用的框架。
“刚刚接受”的手稿已经过同行评审并被接受出版。它们在技术编辑、出版格式和作者校对之前在线发布。美国化学学会向研究界提供“刚刚接受”服务,以加快科学材料在被接受后尽快传播的速度。“刚刚接受”的手稿以 PDF 格式完整出现,并附有 HTML 摘要。“刚刚接受”的手稿已经过完全同行评审,但不应被视为记录的官方版本。它们可以通过数字对象标识符 (DOI®) 引用。“刚刚接受”是提供给作者的一项可选服务。因此,“刚刚接受”网站可能不包含将在期刊上发表的所有文章。手稿经过技术编辑和格式化后,将从“刚刚接受”网站上删除并作为 ASAP 文章发布。请注意,技术编辑可能会对手稿文本和/或图形进行细微更改,这可能会影响内容,并且适用于期刊的所有法律免责声明和道德准则均适用。 ACS 对因使用这些“刚刚接受”稿件中包含的信息而产生的错误或后果不负任何责任。