最近的研究表明,神经成像数据可用于预测大脑年龄,因为它捕获了有关神经解剖学和功能的信息,并且在发育和衰老过程中大脑经历了大脑的发生。但是,由于其具有挑战性且昂贵的获取过程,研究人员通常会有限地访问Neu-Roimaging数据,从而限制了预测模型的效果。分散模型提供了一种绕过传统数据共享方法的更准确和可推广的预测模型的方法。在这项工作中,我们提出了一种分散的大脑年龄估计方法,并在三个不同的特征集上对其进行了评估,包括体积和voxelwise结构性MRI数据以及静止的功能MRI数据。结果表明,与在一个位置中使用所有数据训练的模型相比,分散的大脑年龄模型可以实现相似的性能。关键词:大脑年龄,分散,联合,CoinStac
摘要:从海洋中吸收可用形式的能源的波浪代表着一个有吸引力的挑战,在大多数情况下,这涉及可靠,有效和成本效率的功率采取的机制的波动和整合。在进度的各个阶段,为了评估波浪能设备,进行实验测试很方便,以便于及时考虑到小规模的功率占用机制的现实行为。要成功复制和评估功率接管,需要实施良好的实践,以正确扩展和评估功率接管机制及其行为。本文旨在探索和提出解决方案,这些解决方案可用于在实验研究期间重现和评估功率接管元素,即实验性设置的增强,校准实践和误差估计方法。一系列有关如何实际组织和进行实验的建议,并涵盖了三个案例研究。发现,尽管特定的选项可能严格取决于技术,但各种建议都可以普遍适用。
大数据和(深度)机器学习一直是数字医学中雄心勃勃的工具,但这些工具主要关注关联。对医学的干预是关于因果影响的。假设所有种群的效果大小相同,长期以来一直将平均治疗效应作为因果效应的量度。 但是,似乎没有“一定大小的所有”治疗方法在某些复杂疾病中起作用。 治疗效果可能因患者而异。 估计异质治疗效果(HTE)可能会对发展个性化治疗产生很大影响。 近年来出现了许多用于估算HTE的高级机器学习模型,但是对现实世界中医疗保健领域的翻译研究有限。 为了填补空白,我们审查并比较了最近的11种HTE估计方法,包括元学习者,代表性学习模型和基于树的模型。 我们根据全国医疗保健索赔数据进行了全面的基准实验,并将其应用于阿尔茨海默氏病药物重新使用。 我们在HETE估算领域的HTE估计分析中提供了一些挑战和机遇,以缩小创新的HTE模型与部署之间的差距,以解决现实世界中的医疗保健问题。长期以来一直将平均治疗效应作为因果效应的量度。但是,似乎没有“一定大小的所有”治疗方法在某些复杂疾病中起作用。治疗效果可能因患者而异。估计异质治疗效果(HTE)可能会对发展个性化治疗产生很大影响。近年来出现了许多用于估算HTE的高级机器学习模型,但是对现实世界中医疗保健领域的翻译研究有限。为了填补空白,我们审查并比较了最近的11种HTE估计方法,包括元学习者,代表性学习模型和基于树的模型。我们根据全国医疗保健索赔数据进行了全面的基准实验,并将其应用于阿尔茨海默氏病药物重新使用。我们在HETE估算领域的HTE估计分析中提供了一些挑战和机遇,以缩小创新的HTE模型与部署之间的差距,以解决现实世界中的医疗保健问题。
摘要3 1简介3 1.1 SWE的定义3 1.2 SWE估算的意义和动机4 1.3当前的操作SWE监视5 1.3.1地面测量6 1.3.2模型产品7 1.4 ML 9 1.5当前挑战9 2。SWE估计方法的历史发展10 2.1经验方法10 2.2基于物理的方法11 2.3数据驱动方法13 3.当前基于机器学习的SWE估计研究15 3.1早期努力(2000-2014)15 3.2最新技术(现状)(现状)(2014年至今)18 4。ml福利和瓶颈20 5。讨论和未来方向26 5.1 SWE的广义AI 26 5.2 SWE的自学习剂26 5.3将SWE AI纳入较大的地球AI模型27 6.结论28作者贡献28致谢28资金28参考28
高清(HD)地图在现代自动驾驶汽车(AV)堆栈的开发中发挥了不可或缺的作用,尽管具有高相关的标签和维护成本。因此,许多最近的作品提出了从传感器数据在线估算高清地图的方法,使AV可以在先前映射的重新下进行操作。但是,当前的在线地图估计方法是通过隔离其下游任务的,将其集成在AV堆栈中的开发。特别是它们不会产生不确定性或置信度估计。在这项工作中,我们将多个最先进的在线地图示出方法扩展到估算不确定性的额外,并显示如何与轨迹预测1允许更紧密地集成在线地图1。在这样做时,我们发现纳入不确定性的训练收敛速度最高高出50%,并且在现实世界中驾驶数据集中的预测性能高达15%。
摘要:本文介绍了智能电动轮椅的高级驾驶员援助系统(ADA)的开发,以提高残疾人的自主权。我们的用例基于正式的临床研究,基于轮椅室内环境中物体的检测,深度估计,定位和跟踪,即:门和门把手。这项工作的目的是为轮椅提供一个感知层,使以这种方式检测这些关键点在其直接周围的周围,并构建了短期寿命语义图。首先,我们将Yolov3对象检测算法的改编对我们的用例进行了改编。然后,我们使用Intel Realsense相机介绍我们的深度估计方法。最后,作为方法的第三步也是最后一步,我们根据排序算法介绍了3D对象跟踪方法。为了验证所有发展,我们在受控的室内环境中进行了不同的实验。使用我们自己的数据集对检测,距离估计和对象跟踪进行实验,其中包括门和门把手。
太空机器人技术使人类能够扩大其空间外观功能。机器人臂对于科学数据收集,在其他行星上处理样品以及轨道上的维修操作至关重要,例如加油,维护,装配和清除碎屑。现有的空间操纵系统通常依赖于远程运行,由于沟通延迟和对熟练运营商的需求而构成挑战[1]。启用自主机器人操作的关键要素是Visuomotor技能的开发,它使机器人可以在执行ma-nipulation任务时识别和跟踪对象以及在复杂而动态的环境中导航。机器人可以通过使用视觉伺服(VS)策略来获得基于视觉观察的动作来获得视觉运动技能[2]。这项工作比较了用于自动空间机器人操作的四个基于图像的VS(IBV)技术,评估了复杂的旋转转换场景中不同的深度估计方法,传感器方式,特征和控制定律。此外,我们通过组装方案评估空间维修,组装和制造(ISAM)功能。
支持向量机 (SVM) 是最流行的机器学习 (ML) 方法之一,由于其在从复杂乳腺癌数据集中检测关键特征方面具有独特优势,被广泛用作乳腺癌检测的首选方法。量子支持向量机 (QSVM) 利用量子力学的力量,以理论上的加速优势提高经典支持向量机 (SVM) 算法的性能。然而,它仍然存在噪声中型量子计算 (NISQ) 中的大误差问题和硬件限制。因此,我们提出了一种具有测量误差缓解功能的量子核估计方法,并首先在 IBM 量子处理器上使用威斯康星乳腺癌数据库对其进行测试。实验结果表明,与最先进的模型相比,我们可以在解决此类二元分类问题的准确率上实现显着的性能提升,这表明未来设计和实现具有量子优势的机器学习算法具有巨大的潜力。
研究了具有不确定因果顺序的切换量子通道,用于受量子热噪声影响的量子比特幺正算子相位估计的基本计量任务。报告显示,不确定顺序的切换通道具有特定功能,而传统的确定顺序估计方法则无法实现这些功能。相位估计可以通过单独测量控制量子比特来执行,尽管它不会主动与幺正过程交互 - 只有探测量子比特会这样做。此外,使用完全去极化的输入探针或与幺正旋转轴对齐的输入探针可以进行相位估计,而这在传统方法中是不可能的。本研究扩展到热噪声,之前已使用更对称和各向同性的量子比特去极化噪声进行了研究,它有助于及时探索与量子信号和信息处理相关的具有不确定因果顺序的量子通道的属性。
摘要 — 由于低成本惯性传感器误差积累,行人航位推算是一项具有挑战性的任务。最近的研究表明,深度学习方法在处理这一问题上可以取得令人印象深刻的效果。在本信中,我们提出了一种基于深度学习的速度估计方法的惯性里程计。利用基于 Res2Net 模块和两个卷积块注意模块的深度神经网络来恢复水平速度矢量和来自智能手机的原始惯性数据之间的潜在联系。我们的网络仅使用公共惯性里程计数据集 (RoNIN) 数据的 50% 进行训练。然后,在 RoNIN 测试数据集和另一个公共惯性里程计数据集 (OXIOD) 上进行验证。与传统的基于步长和航向系统的算法相比,我们的方法将绝对平移误差 (ATE) 降低了 76%-86%。此外,与最先进的深度学习方法(RoNIN)相比,我们的方法将其ATE提高了6%-31.4%。