摘要:本文旨在全面阐述一种新的旋翼机噪音降低方法,特别是在终端程序期间,当飞行器接近地面且声学影响较大时。该方法致力于开发用于实时、飞行中监测发射噪音的技术和工具。声辐射的影响以简明、实用的形式呈现在一种新的驾驶舱仪表——飞行员声学指示器 (PAI) 上,用于执行更安静的操作。PAI 基于预先计算的声学数据的协同组合,这些数据与创新的非接触式测量系统收集的数据一起用于噪声估计算法,该系统能够获取主旋翼叶片运动。本文报告了当前在非稳定和准稳定气动声学预测以及翼尖路径平面攻角和推力系数观测方面的研究。讨论了新方法的结果以及 PAI 设计和开发过程的主要特点。
随着个体通过数字平均值的显着相互作用的显着增加,图中节点的聚类已成为分析大型和复杂网络的一种基础方法。在这项工作中,我们提出了深层的位置模型(DEEPLPM),这是一种端到端的生成聚类方法,将广泛使用的潜在位置模型(LPM)与图形卷积网络(GCN)编码策略相结合。此外,还引入了一种原始估计算法,以通过变异推理和使用随机梯度下降进行图形重建来整合后聚类概率的明确优化。在模拟场景上进行的数值实验突出了DeepLPM自养生的能力,以选择簇数量的较低限制,这表明其聚类能力与最先进的方法相比。最后,DEEPLPM进一步应用于Merovingian Gaul的教会网络和引文网络Cora,以说明探索大型且复杂的现实世界网络的实际兴趣。
强化学习算法已知可以根据问题结构表现出多种收敛率。近年来,在开发依赖实例的理论以及实现此类实例最佳保证的算法中取得了很大的进步。但是,如何将这些概念用于推论目的或提早停止,因此仍然存在重要的问题,以便可以为“简单”问题保存数据和计算资源。本文开发了与数据相关的程序,这些过程与实例相关的信心区域进行评估和优化马尔可夫决策过程中的策略。值得注意的是,我们的过程仅需要黑框访问实例 - 最佳算法,然后重复使用估计算法本身中使用的样品。由此产生的数据依赖性停止规则适应了问题的实例特异性,并允许提早终止有利结构的问题。我们通过一些数值研究强调了这种早期停止规则的好处。关键字:强化学习,策略评估,信心间隔,实例依赖性,实例最佳性
摘要 我们引入了一种新的统计和变分相位估计算法 (PEA)。与仅返回特征相位估计的传统和迭代 PEA 不同,所提出的方法可以利用用于迭代 PEA (IPEA) 的硬件的简化版本从给定的酉矩阵确定任何未知的特征态-特征相对。这是通过将 IPEA 类电路的概率输出视为特征态-特征相接近度量来实现的,使用此度量来估计输入状态和输入相位与最近的特征态-特征相对的接近度,并通过输入状态和相位的变分过程接近该对。该方法可以搜索整个计算空间,也可以有效地在某个指定范围(方向)内搜索特征相(特征态),从而使那些对其系统有一定先验知识的人可以搜索特定的解决方案。我们展示了使用 Qiskit 包在 IBM Q 平台和本地计算机上对该方法的模拟结果。
摘要 — 在本文中,我们介绍了一个完整的(硬件/软件)亚奈奎斯特速率(×13)宽带信号采集链,该链能够在 100 MHz – 2 的瞬时带宽内采集雷达脉冲参数。5 GHz,具有相当于 8 ENOB 数字化性能。该方法基于压缩感知(CS)的替代感知范式。硬件平台采用全集成 CS 接收器架构,称为随机调制预积分器 (RMPI),采用 Northrop Grumman 的 450 nm InP HBT 双极技术制造。软件后端由一种新颖的 CS 参数恢复算法组成,该算法无需执行全时域信号重建即可提取有关信号的信息。这种方法显著减少了检索所需信息所涉及的计算开销,这为在功率受限的实时应用中采用 CS 技术提供了一条途径。所开发的技术在由制造的 RMPI 物理测量的 CS 样本上得到验证,并给出了测量结果。详细描述了参数估计算法,并给出了物理硬件的完整描述。
摘要 — 干涉视觉导航 (iVisNav) 是一种用于自主近距离操作的新型光电传感器。iVisNav 采用激光发射结构化信标,通过测量发射激光脉冲相位的变化来精确表征六个自由度相对运动速率。iVisNav 的嵌入式包必须有效处理高频动态,以实现稳健的传感和估计。本文开发了一种基于最小二乘的速率估计新嵌入式系统。由此产生的系统能够与光子学接口并在现场可编程门阵列中实现估计算法。嵌入式包被证明是一种硬件/软件协同设计,使用有限精度算法进行高速计算来处理估计程序。将有限精度 FPGA 硬件设计的精度与 MATLAB 上算法的浮点软件评估进行比较,以对其性能和与误差测量的统计一致性进行基准测试。实施结果证明了 FPGA 计算能力在使用 iVisNav 进行高速近距离导航方面的实用性。索引术语 — 干涉测量法、状态估计、最小二乘法、FPGA
在世界范围内制定了几项政策,以促进电池的健康管理。加利福尼亚空气资源委员会提出的最新的先进清洁汽车II法规指出,向驾驶员共享电池健康信息至关重要,需要2026年及以后在仪表板上显示标准化的健康状况(SOH)指标。16欧洲电池千差万难和电动汽车行业的先进开发也促进了相关政策的建立。17,18,例如,一个新的欧盟监管框架宣布应包括安全性和EOL管理。 19对于基于健康管理的政策,已经建立了一些研究计划,以促进电池健康预后的发展。 例如,Apple设备中的“电池健康”是中健康估计算法的实现17,18,例如,一个新的欧盟监管框架宣布应包括安全性和EOL管理。19对于基于健康管理的政策,已经建立了一些研究计划,以促进电池健康预后的发展。例如,Apple设备中的“电池健康”是
摘要 - 重新研究已经报道了生物启发的软机器人的显着性,以表现出灵敏和接触式的友好型。在这项工作中,我们采取了第一个步骤,通过提出一个全面的建模和控制框架来解决细长气动软机器人的问题。我们的框架采用了一个完全参数化的模型,该模型可以准确地描述了使用Hermite插值的机器人配置和分布力。利用此模型,我们进一步建立了一种估计算法,该算法可以推断出有限的运动数据中的完整机器人配置并分布外力,从而使接触位置和力量感知。整合了该模型和估计器,我们的控制框架 - 工作在不同的力下实现了精确的机器人运动控制,平均轨迹跟踪误差在0.3 mm之内。它还检测到并适应不确定的接触,在自动避免障碍物和精确抓握的测试中证明了这一点。此框架对各种应用程序(例如环境探索和安全操纵)有望在需要与环境的互动中进行安全操作。
我们提供的软件SBIAX旨在使用机器学习和物理研究人员使用密度估计SBI技术来运行贝叶斯推断。这些模型可以轻松地适合代码中的多加速器培训和推断。该软件 - 用JAX编写(Bradbury等,2018) - 允许将最先进的生成模型整合到SBI上,包括连续正常化的流量(Grathwohl等,2018),匹配流量(Lipman等人,2023年,2023年),掩盖了自动化的自动化型(papamakarian et aul ther and all。在代码中实现。该代码具有与Optuna(Akiba等,2019)的集成(Akiba et al。,2019年)的超参数优化框架,该框架将用于确保一致的分析,用于快速MCMC采样的BlackJax(Cabezas等,2024)用于Neural网络方法,用于快速MCMC采样(Kidger&Garcia,2021)。SBIAX的设计允许训练和采样新的密度估计算法,只要它们符合SBIAX中所示的简单且典型的设计模式。
Meniere病(MD)是一种慢性内耳障碍,其特征是眩晕攻击,感觉性听力损失,耳鸣和听觉饱满感。因此,通过使用转录组分析,我们发现了支持MD炎症病因的广泛证据,我们旨在描述MD的炎症变体。我们对45例定义MD和15个健康对照的患者进行了大量RNASEQ。MD患者根据其基础IL-1β的基础水平分为2组:高和低。使用Exphunter Suite进行了差异表达分析,并使用估计算法XCELL,ABIS和CIBERSORTX评估细胞类型比例。MD患者显示出15个差异表达的基因(DEG)。顶部DEG包括IGHG1(p = 1.64´10-6)和IgLV3-21(p = 6.28´10-3),支持在适应性免疫反应中的作用。细胞因子促填充定义具有高水平IL-1β患者的亚组,具有IL6上调(p = 7.65´10-8)和INHBA(p = 3.39´10-7)基因。来自外周血单核细胞的转录组数据支持高水平IL6和幼稚的B细胞和记忆CD8 + T细胞的MD患者的临床亚组。