Figure 1-1 Evolution of electromobility [1] .................................................................................... 3 Figure 1-2 Schematic diagram of a Li-ion battery and main reactions [2] .................................... 4 Figure 1-3 Schematic diagram of a PHEV pack manusfactured by A123 Sysems .......................... 6 Figure 2-1 Single particle model (on the right) based on沿X轴完全电化学模型的空间离散化(左侧)。每个电极只有一个粒子,我们可以将每个节点的值视为电极上的平均数量[22]。............ 13 Figure 2-2 Different types of battery models used in battery management systems (Single particle and Pseudo-two dimensional models from [24]) ........................................................................... 15 Figure 2-3 Concentration gradient through the sphere, representing the single particle model .16图2-4 G(S)及其近似H(S)的比较。........................................................ 16 Figure 2-5 Comparison of fractional transfer function and its approximation in a frequency domain limited to the range including the BMS sampling frequency (approx.70 rad.s -1)。........... 18 Figure 2-6 Block diagram implementation of the electrical fractional model .............................. 18 Figure 2-7 OCP curves of Anode (left) and Cathode (right) against the respective lithiation degree ............................................................................................................................................. 21 Figure 2-8 Validation results of applying extended Artemis drive cycle to the fractional 模型 。23图2-9电压模型和分数电池模型的绝对估计误差和订单7 ECM的各自的绝对估计误差。................................................................................................................................................ 48 Figure 4-6 SDI 28 Ah cell opening at BOL ................................................................................... 52 Figure 4-7 SDI 28 Ah cell opening at EOL ................................................................................... 52
摘要 我们提出了一种将地热资源不确定性纳入可再生能源潜力模型的初步方法,该模型估算了国家尺度网格表面的潜在容量和成本。不确定性输出使用两个能源容量估算方程来表征地热资源的第 10、50 和 90 个百分位数。然后,我们提出了一种方法和结果,展示了如何使用可能指示渗透性的其他地质数据层来告知地热容量的平均值和标准差。我们展示了如何分别通过使用共置回归估计和估计误差来定义或部分告知平均值和标准差。这些回归结果来自大盆地地区观测到的 36 个地热发电厂,也用于对 P10-P90 计算进行基准测试。
优化应用广泛见于科学和工程的许多领域 [1],[2]。在实际应用中,优化问题中涉及的一些参数由于各种原因而受到不确定性的影响,包括估计误差和意外干扰 [3]。这些不确定参数可能是工艺规划中的产品需求 [4]、反应分离回收系统设计中的动力学常数 [5] 和批处理调度中的任务持续时间 [6] 等等。不幸的是,不确定性问题可能导致确定性优化问题(即不考虑不确定性的问题)的解次优甚至不可行 [7]。不可行性,即违反优化问题中的约束,会对解的质量造成灾难性的后果。出于实际考虑,不确定性下的优化引起了学术界和工业界的极大关注 [3],[8]。
摘要 - 基于等效电路模型(ECM)估计开路电压(OCV)的所有电荷状态(SOC)估计算法,并使用SOC-OCV非线性关系将其转换为SOC。这些算法需要识别ECM参数和非线性SOC-OCV关系。在文献中,提出了各种技术来同时识别ECM参数。然而,SOC-OCV关系的同时同时鉴定仍然具有挑战性。本文提出了一种构建SOC-OCV关系的新技术,最终将其转换为单个参数估计问题。使用拟议的参数估计和SOC-OCV构建技术实施了Kalman过滤器,以估算电池中的SOC和相关状态。在数值模拟中,该算法证明它准确地估计了电池模型参数,并且SOC估计误差仍低于2%。我们还通过电池实验验证了所提出的算法。实验结果表明,SOC估计的误差保持在2.5%以内。
这项研究介绍了𝛥𝑄 -method,该方法依赖于放松的电压点和这些点之间的累积电荷。它独立于当前利率,几乎在每个事件之后都适用。优化问题最小化了测量和重建𝛥𝑄之间的偏差。该方法是使用汽车单元格数据集开发的,并使用BMW i3的现实世界数据进行验证。the -method达到了2的平均绝对SOH估计误差2。52%和平均绝对OCV重建误差为7。19 mv。可靠的估计由预定义的过滤器确保。该方法在限制的电荷状态(SOC)窗口或有限的数据点中保持有效。它与输入数据,求解器选择和优化设置的变化相对可靠。通过约束解决方案空间来改善收敛性。
在本文中,解决了一个具有两个控制器级别的实用自适应巡航控制系统(ACC)。上层控制方案由距离和速度控制器组成。该控制器生成所需的加速度轮廓,低级控制器必须尽可能紧密地遵循。具有很高精度的模糊自适应输出反馈控制器会产生这种所需的加速度。此外,自适应观察者估计无法测量的状态。较低级别的控制器调整节气门和制动执行器。在较低级别上,主动干扰排斥控制器(ADRC)消除了应用于汽车的所有内部和外部干扰。ADRC参数是通过粒子群遗传优化算法调整的。证明了所有信号的闭环稳定性和半全球均匀的界限。此外,还保险了ADRC控制器估计误差的渐近收敛性。为了显示所提出方法的有效性,将提出的算法与预测控制器进行了比较,并证明了该方法的性能优越性。
使用有效的飞行策略在未知场景中避开混合障碍物是无人机应用面临的关键挑战。在本文中,我们介绍了一种更强大的技术,仅使用点云输入即可区分和跟踪动态障碍物和静态障碍物。然后,为了实现动态避障,我们提出了禁忌金字塔方法,以迭代方式采用有效的基于采样的方法求解期望的飞行器速度。通过求解具有期望速度和航路点约束的非线性优化问题来生成运动基元。此外,我们提出了几种技术来处理近距离物体的位置估计误差、可变形物体的误差以及不同子模块之间的时间间隔。所提出的方法已实现在机上实时运行,并在模拟和硬件测试中得到了广泛的验证,证明了我们在跟踪鲁棒性、能量成本和计算时间方面的优势。
随着采用压缩光的引力波探测器的出现,量子波形估计(通过量子力学探针估计时间相关信号)变得越来越重要。众所周知,量子测量的反作用限制了波形估计的精度,尽管这些限制原则上可以通过文献中的“量子非破坏”(QND)测量装置来克服。然而,严格地说,它们的实现需要无限的能量,因为它们的数学描述涉及从下方无界的哈密顿量。这就提出了一个问题,即如何用有限能量或有限维实现来近似非破坏装置。在这里,我们考虑基于“准理想时钟”的有限维波形估计装置,并表明由于近似 QND 条件而导致的估计误差随着维度的增加而缓慢减小,呈幂律。结果,我们发现用这个系统近似 QND 需要很大的能量或维数。我们认为,对于基于截断振荡器或自旋系统的设置,预计该结果也成立。
扩散模型通过学习扭转扩散过程来将噪声转换为新的数据实例,已成为当代生成建模的基石。在这项工作中,我们在离散时间内开发了基于流行的基于扩散的采样器(即概率流ode Sampler)的非反应收敛理论,假设访问(Stein)得分函数的ℓ2-2-准确估计值。对于R d中的分布,我们证明D/ε迭代(模拟一些对数和低阶项)足以将目标分布近似于ε总变化距离。这是为概率流ode采样器建立几乎线性维依赖性的第一个结果。仅对目标数据分布的最小假设(例如,没有施加平滑度假设),我们的结果还表征了ℓ2分数估计误差如何影响数据生成过程的质量。与先前的作品相反,我们的理论是基于基本而多功能的非反应方法而开发的,而无需求助于SDE和ODE工具箱。
1 1频道工程系,香港理工大学,香港,中国2号医学和工业超声中心,詹姆斯·瓦特工程学院,格拉斯哥大学,格拉斯哥大学,格拉斯哥大学,英国格拉斯哥,英国21118694r@connect.polyu.hk; tianshidexuanzhe@gmail.com; kokokhlam@polyu.edu.hk; kwokho.lam@glasgow.ac.uk通信:kwokho.lam@glasgow.ac.uk,中国香港香港理工大学电气工程系;詹姆斯·瓦特工程学院医学和工业超声学院,格拉斯哥大学,格拉斯哥大学,英国苏格兰,格拉斯哥大学†同样贡献。 摘要:随着电动汽车(EV)的普及,可充电电池的电压和最新电压(SOC)估计具有重要意义。 SOC参数已被用作传递可充电锂离子电池(LIB)的电能的指标,而电压已是监测所需的关键参数,以防止造成电池损坏的原因,尤其是在充电和放电过程中。 因此,研究重点是使用算法准确估算SOC和电压。 具有避免重大估计误差的能力,使用间接测量值(例如电压和电流)获得的参数,已采用常规扩展卡尔曼过滤(EKF)来估计SOC的最佳值。 但是,该算法在SOC和电压估计中的精度有限,并且对电压预测的误差降低仍然没有深入研究。 这项研究表明,常规的EKF算法会引起估计错误,尤其是当当前突然改变时。1 1频道工程系,香港理工大学,香港,中国2号医学和工业超声中心,詹姆斯·瓦特工程学院,格拉斯哥大学,格拉斯哥大学,格拉斯哥大学,英国格拉斯哥,英国21118694r@connect.polyu.hk; tianshidexuanzhe@gmail.com; kokokhlam@polyu.edu.hk; kwokho.lam@glasgow.ac.uk通信:kwokho.lam@glasgow.ac.uk,中国香港香港理工大学电气工程系;詹姆斯·瓦特工程学院医学和工业超声学院,格拉斯哥大学,格拉斯哥大学,英国苏格兰,格拉斯哥大学†同样贡献。 摘要:随着电动汽车(EV)的普及,可充电电池的电压和最新电压(SOC)估计具有重要意义。 SOC参数已被用作传递可充电锂离子电池(LIB)的电能的指标,而电压已是监测所需的关键参数,以防止造成电池损坏的原因,尤其是在充电和放电过程中。 因此,研究重点是使用算法准确估算SOC和电压。 具有避免重大估计误差的能力,使用间接测量值(例如电压和电流)获得的参数,已采用常规扩展卡尔曼过滤(EKF)来估计SOC的最佳值。 但是,该算法在SOC和电压估计中的精度有限,并且对电压预测的误差降低仍然没有深入研究。 这项研究表明,常规的EKF算法会引起估计错误,尤其是当当前突然改变时。1频道工程系,香港理工大学,香港,中国2号医学和工业超声中心,詹姆斯·瓦特工程学院,格拉斯哥大学,格拉斯哥大学,格拉斯哥大学,英国格拉斯哥,英国21118694r@connect.polyu.hk; tianshidexuanzhe@gmail.com; kokokhlam@polyu.edu.hk; kwokho.lam@glasgow.ac.uk通信:kwokho.lam@glasgow.ac.uk,中国香港香港理工大学电气工程系;詹姆斯·瓦特工程学院医学和工业超声学院,格拉斯哥大学,格拉斯哥大学,英国苏格兰,格拉斯哥大学†同样贡献。摘要:随着电动汽车(EV)的普及,可充电电池的电压和最新电压(SOC)估计具有重要意义。SOC参数已被用作传递可充电锂离子电池(LIB)的电能的指标,而电压已是监测所需的关键参数,以防止造成电池损坏的原因,尤其是在充电和放电过程中。因此,研究重点是使用算法准确估算SOC和电压。具有避免重大估计误差的能力,使用间接测量值(例如电压和电流)获得的参数,已采用常规扩展卡尔曼过滤(EKF)来估计SOC的最佳值。但是,该算法在SOC和电压估计中的精度有限,并且对电压预测的误差降低仍然没有深入研究。这项研究表明,常规的EKF算法会引起估计错误,尤其是当当前突然改变时。尽管可以通过诸如Double Kalman滤波等联合算法提高SOC精度,但是由于非线性误差的叠加,仍然需要优化EKF本身。在这项研究中,进行了修改后的扩展卡尔曼滤波(MEKF)算法的研究,以估算LIB的电压和SOC,并具有估计精度的极大提高。Yuasa Lev50单元在298 K处的标准放电率为0.2 c,以获取离线参数,然后使用新提出的新提出的动态估计数学电池模型(DBOFT)进行优化。这是第一次提出一种结合增益矩阵和噪声的方法,以减少当前转弯点的电压估计误差,从而大大提高了电压估计的准确性。具体来说,MEKF算法能够实时调整参数并减少SOC