我们对通过测量已知温度的吉布斯热态来估计未知汉密尔顿参数的最佳精度设定了上限和下限。界限取决于包含参数的汉密尔顿项的不确定性以及该项与完整汉密尔顿量的不交换程度:不确定性越高和交换算子越多,精度越高。我们应用界限来表明存在纠缠热态,使得可以以比 1 = ffiffiffi np 更快的误差来估计参数,从而超过标准量子极限。这个结果支配着汉密尔顿量,其中未知标量参数(例如磁场分量)与 n 个量子比特传感器局部相同耦合。在高温范围内,我们的界限允许精确定位最佳估计误差,直至常数前因子。我们的界限推广到多个参数的联合估计。在这种情况下,我们恢复了先前通过基于量子态鉴别和编码理论的技术得出的高温样本缩放。在应用中,我们表明非交换守恒量阻碍了化学势的估计。
摘要:输电线路热容量的限制对电力系统的安全性和可靠性起着至关重要的作用。动态热线额定值方法旨在估计输电线路的温度并评估其是否符合上述限制。现有的基于物理的标准是根据多个传感器测量的环境和线路条件来估计温度的。本文表明,采用数据驱动的数字孪生方法可以提高估计精度。所提出的方法利用机器学习,通过学习物理传感器数据和实际导体温度之间的输入输出关系,作为基于物理的标准的数字等价物。对真实数据的实验评估,将所提出的方法与 IEEE 738 标准进行比较,结果显示均方根误差减少了 60%,最大估计误差从 10°C 以上降至 7°C 以下。这些初步结果表明,数字孪生提供了更准确、更稳健的估计,可以作为传统方法的补充或潜在替代方案。
摘要 - 该论文研究了单个握手用户向卫星群的上行链路传输,重点是利用卫星间链接以实现合作信号检测。研究了两例:一个案例具有完整的CSI,另一个具有卫星之间的部分CSI。用容量,开销和位错误率进行比较两种情况。此外,在两种设计中都分析了通道估计误差的影响,并提出了强大的检测技术将通道不确定性处理到一定水平。显示了每种情况的性能,并与传统的卫星通信方案进行了比较,其中只有一个卫星可以连接到用户。我们的研究结果表明,轨道上总共有3168颗卫星的拟议星座可以通过与12个卫星与500 MHz的带宽合作并占据800 Mbits/sec的容量。相比之下,对于最近的卫星,具有相同系统参数的常规卫星通信方法的容量明显低于150 mbits/sec。
摘要 - 目的:可靠的神经机界界面提供了控制高敏捷的高级机器人手的可能性。这项研究的目的是开发一种解码方法,以同时估计单个手指的屈曲和延伸力。方法:首先,通过表面肌电图(EMG)分解确定了电动机(MUS)发射信息,并将MUS进一步分为不同的池中,以通过细化程序屈曲和扩展单个手指。MU发射速率,然后通过双变量线性回归模型(神经驱动方法)估算单个手指力。基于常规EMG振幅的方法被用作比较。结果:我们的结果表明,与常规方法相比,神经驱动方法的性能明显更好(估计误差和较高的相关性)。结论:我们的方法为灵巧的手指运动提供了可靠的神经解码方法。的意义:进一步探索我们的方法可能会提供强大的神经机界面,以直观地控制机器人手。
摘要 - 随着高级机器人手的发展,可靠的神经机界面对于充分利用机器人的功能灵活性至关重要。在这项初步研究中,我们开发了一种新的方法,可以在灵巧的手指屈曲和伸展过程中连续和同时估计单个手指的等距力。具体而言,分别从手指伸肌和屈肌记录的表面高密度肌电图(EMG)信号中提取运动单元(MU)排放活性。MU信息被分为不同的组,与单个手指的屈曲或伸展相关,然后在多手指屈曲和扩展任务期间用于预测单个手指力。与常规EMG振幅方法相比,当使用线性回归模型时,我们的方法可以获得更好的力估计性能(预测力和测量力之间的较高相关性和较小的估计误差)。对我们方法的进一步探索可以潜在地提供强大的神经机界面,以直观地控制机器人手。
最近的北极海冰迅速丧失激励了对北极海冰厚度的研究。描述冰厚性演化的全球气候模型需要北极海冰的准确空间温度曲线。但是,在整个北极ICECAP中测量完整温度曲线是不可行的。相反,通过从海底和卫星设备中获取数据可用来测量冰厚度。在本文中,我们开发了一种反向替代的观察者算法,以通过可用的海冰厚度和海冰表面温度来估算北极海冰模型的温度曲线。观察者以严格的方式设计,以将无盐度海冰模型的温度剖面估计误差提高到零。此外,提出的观察者用于通过数值模拟估算具有盐度原始海冰模型的温度曲线。模拟结果表明,我们的观察者设计在三天内成功地估计了海冰温度剖面,这比直接的开环算法快十倍。©2019 Elsevier Ltd.保留所有权利。
摘要 - 在本文中,开发了一种自适应轨迹同步控制器,该控制器是在机器人模型参数(包括非线性参数摩擦术语)中的通信时间延迟和不确定性的情况下将机器人关节轨迹同步到人类关节轨迹的。通过解释人类机器人协作任务中出现的时间延迟,例如,使用图像处理估算人类轨迹或传感器融合以进行轨迹意图估计或计算限制,将控制器同步到人类轨迹。开发的自适应时间延迟同步控制器采用了新的积分并发学习(ICL)基于基于神经网络参数估计的参数更新定律。使用Lyapunov-Krasovskii函数分析证明了同步和参数估计误差的最终有界稳定性。使用人类机器人同步示例提出了蒙特卡洛模拟的结果,以验证所提出的同步控制器的性能。使用人类机器人同步示例提出了蒙特卡洛模拟的结果,以验证所提出的同步控制器的性能。
视线(LOS)导航是一种光学导航技术,可利用从车载成像系统获得的可见天体的方向,以估算航天器的位置和速度。将方向馈送到估计过滤器中,其中它们与观察到的物体的实际位置匹配,该位置是从船上存储的胚层检索的。作为LOS导航代表了下一代深空航天器的一个真正有希望的选择,这项工作的目的是提供有关效果的新见解。首先,分析信息矩阵以显示航天器和观察到的行星之间的几何形状的影响。然后,使用Monte Carlo方法来研究测量误差的影响(范围从0.1到100 ARCSEC)和跟踪频率(从每天的四个观测值到每两天的观察范围)。通过两个指标对导航性能的影响进行了影响。首先是3D位置和速度均方根排出,一旦估计被认为是稳态的。第二个是收敛时间,它量化了估算到达稳态行为所需的时间。模拟基于一组四个行星,这些行星不遵循共同的以heliepentric动力学的速度,而是绕太阳旋转,并以相同的(无距离)角速度的角速度旋转。这种方法允许将方案依赖性行为与导航固有属性分开,因为在整个模拟过程中观察者和观察到的对象之间的相同几何形状是相同的相对几何形状。结果为下一代自主导航系统提供了有用的指南,既可以定义硬件要求和设计适当的导航策略。然后将注意事项应用于近地球小行星的任务方案,以定义导航策略和硬件要求。显示了航天器和行星之间相对角度的重要性。在单个球衣观察方案中,当航天器和行星的位置向量之间的角度接近无效的值时,估计误差会降低。在双行星观察方案中,当两个LOS方向之间的分离角接近90时,估计误差会降低。对性能的主要影响是由测量误差驱动的,当前技术被证明能够以几百公里的顺序提供位置误差,而较低的测量误差(0.1 ARCSEC)可能在100 km以下的位置误差。最后,可以证明跟踪频率在性能中起次要作用,并且只有在收敛时间明显地影响。2022 cospar。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
张量高斯图模型 (GGM) 可以解释张量数据中的条件独立结构,在许多领域都有重要应用。然而,由于获取成本高,单个研究中可用的张量数据往往有限。虽然相关研究可以提供额外的数据,但如何汇集这些异构数据仍是一个悬而未决的问题。在本文中,我们提出了一个张量 GGM 的迁移学习框架,该框架充分利用了信息辅助域,即使存在非信息辅助域,也能从精心设计的数据自适应权重中受益。我们的理论分析表明,通过利用辅助域的信息,在非常宽松的条件下,目标域上的估计误差和变量选择一致性得到了显着改善。在合成张量图和大脑功能连接网络数据上进行了广泛的数值实验,证明了所提出方法的令人满意的性能。关键词:大脑功能连接、高斯图模型、精度矩阵、张量数据、迁移学习。
摘要 干涉成像是一种新兴的粒子跟踪和质量光度测定技术。质量或位置是根据纳米粒子或单个分子相干散射的弱信号估计的,并与同向传播的参考信号相干。在这项工作中,我们进行了统计分析,并从散粒噪声受限图像中推导出感兴趣参数测量精度的下限。这是通过使用干涉成像技术的精确矢量模型,计算定位和质量估计的经典克拉美-罗界限 (CRB) 来实现的。然后,我们基于量子克拉美-罗形式推导出适用于任何成像系统的基本界限。这种方法可以对干涉散射显微镜 (iSCAT)、相干明场显微镜和暗场显微镜等常见技术进行严格和定量的比较。具体来说,我们证明了 iSCAT 中的光收集几何极大地提高了轴向位置灵敏度,并且用于质量估计的 Quantum CRB 产生的最小相对估计误差为 σ m / m = 1 / ( 2 √