-glomalin,EPS和生物膜改善了土壤聚集的稳定性并增加了根际中的水分,在干旱1,2下增加了植物生存和生物量,以及在盐胁迫下发芽3。- 细菌生物膜减少了植物组织中砷的摄取和砷的积累,并改善了植物生长4。植物激素的分泌-Rhizobial Gearins促进了Rubisco和低分子量的渗透量产生,增加了干旱耐受性5,并促进了不定的根生长以抵消洪水6。- 细菌细胞分裂素增加了相对的水含量,叶水的潜力以及干旱下的根渗出液的产生。- 末期真菌gberellins调节植物激素,导致盐和干旱胁迫下的营养同化较高。8。- 细菌脱落酸增强了脯氨酸水平以及光合作用和光保护色素,减少了在干旱下损失的植物水9。- 细菌中的ACC-脱氨基酶基因增加了根部伸长和病原体耐药性10。
最近在亲戚家族中报道了一种纯合废话PCDH12变体,该杂志中受影响的儿童患有先天性小头畸形,癫痫病和严重的全球发育障碍。1胎儿MRI和USG在中脑 - 高层丘脑 - 光学区域和过度教育性perithalamic Foci中显示出发育不良的伸长肿块。PCDH12概述了一种与膜物理稳定性,粘附和脉管系统维持相关的原粘蛋白,并最近被指出为原发性家族性脑钙化(PFBC)的候选基因。pFBC的特征是在没有次要原因的情况下,存在主要影响基底神经节的钙化。2临床表现包括运动障碍,认知障碍,精神障碍和头痛,在成年期间最常开始。在4个基因中鉴定出多达50%的家族的常染色体显性pfbc的2,3杂合变体在4个基因中鉴定出:SLC20A2,PDGFRB,PDGFB和XPR1。4 - 8我们先前搜索具有类似于PFBC Major
b浸出的棉织物已用辣木叶提取物预先治疗,作为天然生物活性材料,以赋予织物双抗菌和日晒特性。织物是用二氧化钛纳米颗粒(TIO 2 NP)和氧化锌纳米颗粒(ZnONPS)分别用浓度为2wt。%和1 wt。%和1 wt。%,在1,2,3,3,3,3,3,4-二苯甲烷基二羧酸(btaCA)的情况下,均采用了非固定剂,该方法是通过非固定剂的涂抹量。通过使用扫描电子显微镜和X射线衍射,扫描电子显微镜(SEM和EDX),机械性能(断裂时的拉伸强度和伸长),粗糙度,超级保护因子(Ultra-Violet Protection rigistion(UPF)),通过使用扫描电子显微镜和X射线衍射,扫描电子显微镜(SEM和EDX)来评估处理的棉织物。此外,使用磁盘抑制区评估抗菌活性的织物。研究输出揭示了用辣木提取物治疗的织物,然后用二氧化钛纳米氧化物粉末显示出最佳效果。
以及越来越允许的社会文化态度和法律,怀孕期间的大麻使用在2002年(3.4%)和2017年(7%)(7%)之间增加了一倍,尽管有证据表明政府卫生机构的潜在不利后果和灰心(例如外科医生,食品和食品药物管理局外科医生,食品和专业人士)2,3和专业人士(American Colledications of Altive College of Archenecissians)(American College of Archestricistricistricistrics和Gynec)。累积研究将产前大麻暴露(PCE)与儿童期,青春期和成年初期的不良行为结局联系起来(例如,心理病理学增加,认知5-8;另请参见9-11),这表明PCE可能会影响大脑发育。作为大麻构成遍历胎盘12并与胎儿内源性内源性内源性系统的界面,这对神经发育有效(例如,轴突伸长,突触可塑性,突触下修剪)13,有可能通过PCE影响大脑发育的可行分子机制。但是,缺乏研究这种假定的神经系统水平机制14的研究,这是适当评估怀孕期间大麻使用的安全所需的。
胃底子是早期人类发育的强大体外模型。然而,尽管由所有三个细菌层伸长并组成,但人类胃突不像形态学后的植入后人类胚胎。在这里,我们显示了视黄酸(RA)的早期脉冲,以及Matrigel,可牢固地诱导人类胃类型,具有后胚胎样形态结构,包括侧翼的神经管,分段的细胞体和各种细胞类型,包括神经crest,神经祖细胞,神经祖细胞,肾脏,肾脏,肌肉和肌肉和肌肉和肌肉和肌肉。通过基于单细胞RNA-seq(SCRNA-Seq)的计算机分期进行,我们发现人Ra-gastruloids比其他胚胎模型更先进,并且与E9.5小鼠和CS11 Cynomolgus Monkey Embryos相当。我们利用RA-GASTRULOIDS的化学和遗传扰动来确认Wnt和BMP信号传导在人类环境中调节了体积的形成和神经管长度,而转录因子TBX6和PAX3分别基于前甲基前中性胚乳和神经Crest。展望未来,ra-gastruloids是解码早期人类胚胎发生的强大,可扩展的模型。
先进的现代技术和工业可持续性主题已为各种工业应用实施复合材料。绿色复合材料是绿色产品所需的替代品之一。但是,要正确控制绿色复合材料的性能,预测其成分性质至关重要。这项工作提出了一种创新的遗传编程树模型,用于根据几种固有的化学和物理特性来预测天然纤维的机械性能。纤维素,半纤维素,木质素和水分含量以及各种天然纤维的微纤维角度被认为可以建立预测模型。将一种备用方法用于训练/测试阶段。可靠的模型,以预测自然纤维的断裂特性时的拉伸强度,Young的模量和伸长。揭示了微纤维角度是主导的,能够确定天然纤维的最终拉伸强度与其他所考虑的特性相当,而模型中纤维素含量的影响仅为35.6%。这将有助于利用人工智能预测天然纤维的总体机械性能,而无需实验性努力和成本,以增强为各种工业应用开发更好的绿色复合材料。
聚酰亚胺ber具有高强度和模量和较高的放射性耐药性,1使其可以用作航天器和火箭的轻质电缆夹克,以及用于空间应用的ber-ber强化复合材料。由于空间中使用的材料可能会受到大量的高能辐射,因此必须评估聚酰亚胺BER对高能辐射的响应很重要。在几年内实施了大量使用聚酰亚胺的空间实验。研究了Kapton对3 MeV质子辐射的辐射敏感性,结果表明,在放射溶解时,分解,断裂应激和聚合物的断裂能显着降低。此外,断裂时的伸长率与用相同剂量的2 meV电子照射诱导的伸长级相似。2电子,质子或两个合并的辐照都诱导的键断裂和聚酰亚胺分子的交联,而质子辐射可以比电子辐照更容易打破PI键,然后导致在样品表面积上形成石墨样结构。3质子辐照增加了初始摩擦系数,并降低了聚酰胺的稳定摩擦系数。4辐照PI的磨损速率下降了:电子照射>质子辐照>联合照射。5质子照射还可以控制聚酰亚胺的折射率。折射
•Jacobs,Ruth Q.等,RNA聚合酶I,II和III的转录伸长机制及其治疗意义,《生物化学杂志》,(2024),第300卷,第300卷,第3、105737页,doi:10.1016/j.jbc.2016/j.jbc.20224.1057373737•ma j,n.ma j,mai n n fri n n n n n n n n n n w n n n n n n n w n n w y n n n n n n w y n n w n n n w n friiion。科学。2013年6月28日; 340(6140):1580-3。 https://doi.org/10.1126/science.1235441•Dulin,D。,磁镊子简介。in:Heller,I.,Dulin,D.,Peterman,E.J。(EDS)单分子分析。分子生物学中的方法,第2694卷,(2024年),纽约州人类,纽约,纽约。https://doi.org/10.1007/978-1-0716-3377-9_18 11。 候选人的要求(Wymagania):https://doi.org/10.1007/978-1-0716-3377-9_18 11。候选人的要求(Wymagania):
Ahmed Kareem Lateef博士抽象篮球运动员的垂直跳跃涉及各种方法,包括定向训练方法,该方法的重点是短螺旋周期(SSC)和肌肉主轴反应。这项研究旨在确定高素质和其他训练对篮球运动员腿部肌肉爆炸能力的影响。此信息对于教练修改其培训计划以提高垂直跳跃性能并在其团队中取得成功非常有用。这项研究为教练在计划年度培训计划中计划课程的教练提供了宝贵的见解,因为垂直跳跃会影响其技术绩效。关键字:篮球运动员,陈级集中,交接技能介绍以开发篮球运动员的垂直跳跃,有几种方法,包括定向训练方法,这是依赖其在三个阶段操作的方法之一:(固结,伸长,伸长和缩短和缩短),换句话说,中心和偏心contract。定向力学取决于短螺丝周期(SSC)。通过使用对势能的肌肉纺锤体反应,在运动的偏心肌肉作用中出现拉伸,从而在肌肉的连续弹性成分(SSC)中产生张力和强烈而快速的能量存储。肌肉的连续成分类似于环,(指导)被定义为使肌肉能够达到的练习。力量及其训练对于发展一般球员的身体能力,尤其是尤其是重要的训练。它的特征是强度和速度。在尽可能短的时间内达到最大长度(力速能力称为力),许多篮球运动员在得分技巧,尤其是跳高得分方面面临着弱点,这被认为是确定重要比赛表现的重要因素之一。因此,有必要采用最有效地发展肌肉力量的现代训练方法,并且根据篮球比赛的技能表现,这项工作将决定腿部肌肉的爆炸能力受到这组玩家的手工技能的爆炸性和其他训练的影响。这项工作将在篮球运动员的物理准备领域具有实际应用。从实际的角度来看,此信息对于教练修改其特定培训计划以提高垂直跳跃性能并在团队中取得成功很重要。很明显,篮球运动员的垂直跳跃会影响他们的技术表现。我们的研究中提供的信息可以为教练在计划年度培训计划中规划高级课程方面具有重要优势。研究问题的物理准备在篮球运动中占据了重要地位。但是,这项运动中最有效的训练方法仍有待证明。篮球中最重要的特征之一是垂直跳跃。因此,我们认为研究面向钢化值的训练对腿部爆炸能力的发展以及在年轻篮球运动员中跳跃得分很重要。研究人员还试图回答以下一些问题。
虽然在理论上和体外都很好地理解了转录和DNA超串联之间的反馈,但在体内仍有待量化。在这次演讲中,我将介绍我们的工作,通过在大肠杆菌中的质粒上意识到这一差异,这是理论和体外研究的基础概念性的“双转录 - 环模型”。,我们测量了基因表达如何随启动子和拓扑障碍的距离而变化。我们发现基因表达取决于与上游屏障的距离,但不取决于下游屏障,其依赖性强度依赖于启动子。i然后将提出DNA转录的第一原则生物物理模型,该模型能够对这些发现进行定量合理化。该模型与可用的体外测量值进行了参数化的RNA聚合酶的结合,启动和伸长,以及拓扑异构酶的作用,这些参数受到我们的实验结果的约束。通过将其与数据进行比较,它支持Topoi和Gyrase必须在基因上游和下游分别具体起作用,并预测Topoi比Gyrase不那么活跃。它还突出了托托伊的拮抗作用,托图伊既促进伸长率又倾向于抑制起始。