静电纺丝是一种用于制造具有高表面积和微孔隙率的聚合物支架的技术,可用于各种生物医学应用,例如心血管植入物、骨骼、心脏和神经组织工程以及药物输送。与传统的挤压聚合物设备相比,静电纺丝聚合物支架具有较高的表面积,因此更容易发生快速水解和氧化降解,这可能会影响设备在使用过程中的生物相容性和机械完整性。本研究旨在确定静电纺丝工艺参数如何影响聚合物支架的形态、降解曲线和机械性能。静电纺丝支架由聚(乳酸-乙醇酸共聚物)(PLGA 50:50 和 82:18)和聚己内酯 (PCL) 制成,以获得从 1500 nm 到 750 nm 不等的纤维直径。使用扫描电子显微镜 (SEM) 检查纳米纤维形态,并使用图像处理软件 (ImageJ) 测量纤维直径。通过将支架浸入 37°C 的 PBS 中 12-24 周来进行降解研究。定期取出样品,测量质量损失百分比和机械性能(拉伸强度和断裂伸长率)。使用差示扫描量热法 (DSC) 测量聚合物样品的玻璃化转变温度。我们的研究结果表明,聚合物支架特性(纤维直径和孔隙率)可以显著影响降解率,进而影响纤维随时间变化的机械完整性。这种理解将使我们能够预测和控制对体内性能至关重要的设备属性。
摘要描述:石油和天然气应用,特别是钻井应用的要求不断增加。新的钻井技术需要能够满足机械、磁性和腐蚀性能方面的挑战性要求的材料。新的油气田在海底更深的深度进行勘探,为了进行这些勘探,应该开发新材料。这些新材料必须表现出高强度,屈服强度高于 1035 MPa (150 ksi),并且在钻井液高温和盐度结合的恶劣环境中具有出色的腐蚀性能。德国 Edelstahlwerke 开发了一种满足钻井应用苛刻要求的新材料解决方案。新开发的无磁性高间隙 (FeCrMnMo(C+N)) 奥氏体不锈钢采用感应炉中的传统炼钢工艺、随后的电渣重熔和热加工生产。这种新型 FeCrMnMo-HIS 具有强度高、韧性好、耐腐蚀性能强等特点。固溶退火后,该材料完全为奥氏体,伸长率高于 60%,屈服强度和极限强度分别为 600 MPa (87 ksi) 和 980 MPa (142 ksi),冲击能量高,高于 350 J (> 258 ft-lbs)。FeCrMnMo-HIS 钢未经敏化处理,未发生晶间腐蚀,在室温下氯化铁溶液中测试 72 小时后未失重,且具有较高的点蚀潜力。临界点蚀温度为 35 °C (95 °F)。此外,HI-Steel 在 108 °C (226 °F) 的饱和 NaCl 中具有抗应力腐蚀开裂性。出色的机械性能、氯化物环境中的良好耐腐蚀性以及经济高效的生产使新型高间隙 (C+N) 非磁性奥氏体不锈钢成为石油和天然气应用非常有前途的合金。1.创新是什么?开发了一种新型非磁性高间隙 (FeCrMnMo(C+N)) 奥氏体不锈钢。出色的机械性能、氯化物环境中的良好耐腐蚀性以及经济高效的生产使新型高间隙 (C+N) 非磁性奥氏体不锈钢成为石油和天然气应用非常有前途的合金。2.这项创新是如何实现的?%)。该钢采用传统炼钢工艺生产。这项工作于 2017 年开始,目前仍在进行中。开发了一种新型非磁性高间隙(FeCrMnMo(C+N))奥氏体不锈钢,其名义成分为 Fe-18Cr-18Mn-2Mo-1(C+N)(wt.它在固溶退火条件下具有良好的伸长率、强度和冲击能量组合。抗点蚀当量数 (PREN) 高于 35。高间隙(HI)钢在不同环境下表现出良好的抗应力腐蚀开裂和点蚀性能。新型高间隙 FeCrMnMo 奥氏体不锈钢是一种非常有前途的牌号,适用于石油和天然气工业,因为其机械强度高于 1000 MPa(145 Ksi)且具有良好的腐蚀性能。3.描述腐蚀问题或技术差距激发了创新的发展。创新如何改进现有的方法/技术来解决腐蚀问题或提供新的解决方案来弥补技术差距?
摘要 — 本研究探讨了孔隙率对采用电弧增材制造 (WAAM) 生产的超级双相不锈钢 (SDSS) 弯曲疲劳强度的影响。横截面分析显示,SDSS 壁的平均宽度为 5.8 毫米,比多孔 SDSS (SDSS P) 壁宽约 1 毫米,这归因于较低的打印速度和不同的保护气体。X 射线成像证实 SDSS 材料中没有孔隙,但显示 SDSS P 材料中存在大量均匀分布的孔隙,直径从 0.4 到 1.1 毫米不等。垂直方向的硬度测量显示两种材料的硬度水平一致,SDSS 的平均值为 312 HV,SDSS P 的平均值为 301 HV。这种均匀性表明,当孔隙率不是影响因素时,基材强度相似。然而,机械测试显示出显著差异:SDSS 的屈服强度 (YS) 比 SDSS P 高 15.4%(630 MPa 对 546 MPa),极限抗拉强度 (UTS) 为 819 MPa,而 SDSS P 为 697 MPa。最值得注意的是,SDSS 的伸长率为 37.4%,比 SDSS P 高出约 118.7%,表明由于孔隙率导致延展性显著降低。疲劳测试表明 SDSS 的疲劳极限为 377 MPa,明显高于 SDSS P 的 152 MPa 极限。发现孔隙的存在会急剧降低疲劳强度。断口分析表明,SDSS P 中的疲劳裂纹源自孔隙。总体而言,研究结果表明孔隙率显著降低了 WAAM 制造的 SDSS 的机械性能,使其不太适合需要高强度和延展性的应用。
Mg 合金的粉末床熔合 - 激光束 (PBF-LB) 为生产具有优化设计的复杂结构提供了新的可能性,既可用于减轻航空航天应用中的重量,也可用于骨科应用中针对特定患者的植入物。然而,尽管已经对该主题进行了大量研究,但各个 PBF-LB 工艺参数对 Mg 合金微观结构和由此产生的材料性能的影响仍然不明确。因此,本研究旨在研究激光功率对表面粗糙度、微观结构和由此产生的关键材料性能(即耐腐蚀性和机械性能)的影响。样品由气雾化的 Mg-4%Y-3%Nd-0.5%Zr(WE43)合金粉末通过 PBF-LB 制成,使用三种不同的激光功率:60 W、80 W 和 90 W。与预期相反,90 W 样品的降解率最高,而 60 W 样品的降解率最低,尽管后者的表面粗糙度最高且内部孔隙较大。相反,发现 90 W 样品的较高降解率源于近表面微观结构。较高的能量输入和随之而来的晶粒尺寸减小,导致第二相沉淀物的数量比 60 W 样品增加,从而增加了通过微电偶腐蚀发生点蚀的趋势。对于拉伸强度和断裂伸长率,观察到了相反的趋势。在这里,发现 90 W 样品的晶粒尺寸减小和沉淀物增加是有益的。总之,观察到激光功率对微观结构的形成有一定影响,最终影响 WE43 的腐蚀和拉伸性能。未来的工作应该研究其他 PBF-LB 工艺参数的影响,以期在耐腐蚀和机械性能之间建立最佳平衡。
摘要:共晶镓-铟 (EGaIn) 因其在室温下可塑性强、导电性和机械稳定性,越来越多地被用作分子电子学和可穿戴医疗设备中的界面导体材料。尽管这种用途日益广泛,但控制 EGaIn 与周围物体相互作用的机械和物理机制(主要受表面张力和界面粘附力调节)仍不太清楚。在这里,我们在原始 EGaIn/GaO x 表面上使用深度感应纳米压痕 (DSN),揭示了 EGaIn/基底界面能的变化如何调节粘附和接触机械行为,特别是具有不同毛细管几何形状和压力的 EGaIn 毛细管桥的演变。通过使 EGaIn 处于不同的化学环境中,并用化学性质不同的自组装单层 (SAM) 对尖端进行功能化,可以改变界面能,我们发现 EGaIn 和固体基底之间的粘附力可以提高多达 2 个数量级,从而使毛细管桥的伸长率增加约 60 倍。我们的数据表明,通过部署具有不同端基的 SAM 的分子结,电荷传输速率趋势、单层的电阻以及 EGaIn 和单层之间的接触相互作用(从电气特性来看)也受界面能控制。这项研究为了解界面能对 EGaIn 毛细管桥几何特性的作用提供了关键的理解,为以受控方式制造 EGaIn 结提供了见解。关键词:EGaIn、毛细管桥、深度感应纳米压痕、分子结、自组装单分子膜■ 简介
严重塑性变形 (SPD) 因有可能将晶粒细化到亚微米或纳米级,从而显着提高力学性能而受到广泛关注。15) 然而,对于实际应用,扩大 SPD 样品的规模仍然是一项具有挑战性的任务。最近的研究表明,高压滑动 (HPS) 是一种有效的晶粒细化工艺,可使条带形式的晶粒细化并具有均匀的微观结构。69) 当 HPS 工艺与板材形式的样品进给相结合时,样品尺寸进一步增加,称为增量进给 HPS (IF-HPS),10,11) 以及与棒状样品绕纵轴旋转相结合,称为带旋转的多道次 HPS (MP-HPS-R)。12,13) IF-HPS 和 MP-HPS-R 工艺都具有很好的实际应用前景。尽管如此,对于 MP-HPS-R 工艺,迄今为止加工的最大直径为 10 mm 的棒材,并且在棒材中心周围获得了直径仅为 6 mm 的均匀应变区域。因此,在本研究中,我们挑战将 MP-HPS-R 工艺应用于直径 16 mm 的更大棒材的晶粒细化。本实验使用 Al 3Mg 0.2Sc(质量%)合金,因为当晶粒尺寸通过 SPD 工艺细化时,该合金表现出超塑性,并且总伸长率可被视为晶粒细化的程度。14 17) 使用透射电子显微镜 (TEM) 进行微观结构观察,并使用显微硬度测量和拉伸测试评估机械性能。结果表明,成功生产出具有超细晶粒结构的大尺寸棒材,同时保持了与 SPD 加工相关的基本特性。
规格测量能力:224.8 lbf(100 kgf)精度:FS线尺寸直径的±0.2%。范围:0.03-0.25 in; 0.8、1.0、1.5、2.0、2.5、3.0、3.5、4.0、5.0、6.35毫米; AWG 30 -AWG 3最小样品长度:5.5英寸(140毫米)最大伸长率:1.7英寸(44毫米)度量单位:N,KGF,LBF,OZF测量模式:轨道,峰值,峰值,峰值,第一峰,自动峰值超载保护:120%的全尺度采样率:2 kHz(轨道模式); 8 kHz(峰模式); 8 kHz(第一峰); 8 kHz(汽车峰)显示:160* 128点矩阵LCD显示更新速率:100ms分辨率:0.01 lbf,0.1 n,1 ozf,0.01 kgf,0.01 kgf内存:1000个数据点输出:USB,串行端口端口RS-232,高和低限制NPN电池电池闪光灯:低电池闪光灯时,电池电量效率低。25 Hours continuous on full charge Charger/Adapter: Universal USB charger, input 110 - 240 V ac 50/60 Hz Power: 3.6 VDC 1600 mAH Ni-MH battery pack Operating Temperature: 14 to 104°F (-10 to 40°C) Humidity Limit: 20 - 80% RH Dimensions: 12.9 x 5.4 x 9.8” (327 x 136 x 249 mm) Product Weight: 10.4 lb (4.7千克)包裹重量:12.8磅(5.8千克)保修:1年认证:CE,ROHS包括配件:USB电缆,充电器适配器,加利福尼亚。证书。可选配件:RS-232电缆,打印机电缆
摘要:本研究旨在增强农业副产品的增值,以通过溶液铸造技术生产复合材料。众所周知,PLA对水分敏感并在高温下变形,这限制了其在某些应用中的使用。与植物基纤维混合时,弱点是较差的填充 - 马trix界面。因此,通过乙酰化和碱处理在大麻和亚麻纤维上进行表面修饰。将纤维铣削以获得两种颗粒尺寸<75 µm和149–210 µm,并在不同的载荷(0、2.5%,5%,10%,20%和30%)下与聚(乳酸)酸混合,形成复合膜以形成薄膜这些膜的谱图,物理和机械性质。所有薄膜标本都显示出C – O/O – H组,未处理的亚麻填充剂中的π–π相互作用在膜中显示出木质素酚环。注意到,最大降解温度发生在362.5°C。未经处理,碱处理的最高WVP和乙酰化处理的复合材料为20×10 - 7 g·m/m 2 Pa·S(PLA/HEMP30分别为7 g·m/m 2 Pa·S(PLA/HEMP30)。与纯PLA相比,增加填充含量会增加复合膜的色差。碱处理的PLA/亚麻复合材料在2.5或5%的填充物载荷下,其拉伸强度,伸长率和Young的模量显示出显着改善。增加填充物的增加导致吸收的水分显着增加,而水接触角则随着填料浓度的增加而降低。亚麻和大麻诱导的基于PLA的复合膜,载荷为5 wt。载荷显示出更稳定的所有检查特性,并有望提供具有令人满意的性能的独特工业应用。
增材制造金属的机械性能各向异性有几个物理原因。这些原因包括但不限于方向依赖的晶粒和相形态、晶体结构、定向孔隙率/缺陷以及与熔池、分层微观结构相关的异质性。所有这些在大多数增材制造工艺中都很普遍,很难区分它们在机械各向异性中的作用。本综述重点介绍那些试图或合理地隔离其中一个或两个来源的研究,而不是简单地报告机械性能的趋势。这不是一份涵盖所有增材工艺或机械性能的详尽综述;主要评估的是激光粉末床熔合 (LPBF) 金属和拉伸试验结果(模量、屈服强度、极限拉伸强度、伸长率和断裂表面分析)。总之,LPBF 合金的各向异性拉伸性能的主要来源是晶体结构、各向异性微观结构形态、熔合缺陷不足和熔池宏观结构。在各向异性微观结构中,与相和特征(例如晶界 α、沉淀物等)的优先分布相比,拉长的晶粒似乎是次要的。各向异性模量和屈服强度主要由晶体织构引起。晶体塑性模拟支持了这一点。各向异性伸长主要由各向异性微观结构形态、未熔合缺陷和熔池宏观结构引起。支持这一点的证据来自遵循这些特征的断裂表面。熔池宏观结构是最难通过实验从其他各向异性源列表中分离出来的。一组激光工艺参数和合金的发现并不具有指导意义。在将拉伸各向异性的原因与特定来源联系起来之前,必须对上述来源进行表征。需要制定表征和操纵晶体织构、孔隙率、晶粒和相形态以及熔池宏观结构的策略,以更好地理解和控制 AM 金属中的机械各向异性。
摘要:Stelite-6/Inconel 718功能梯度材料(FGM)是一种耐热的功能梯度材料,在超高温度(650-1100℃)下具有出色的强度性能(650–1100°C),因此在航空通道和航空航天工程中具有潜在的应用,例如发动机涡轮机。为了研究初始温度对激光金属沉积(LMD)功能梯度材料(FGM)的微结构和性能的影响,本文使用LMD技术在两个不同的初始温度下形成Stelite-6/Inconel 718 FGM 718 FGM:室温和预加热(300℃)。分析内部残留应力分布,元素分布,微结构,拉伸特性和微硬度的100%Stelite-6至100%Inconel 718 FGM在不同初始温度下形成的10%梯度,在不同的初始温度下形成。实验结果证明,高初始温度有效地改善了内部残留应力的不均匀分布。预热减慢了熔体池的固定时间,并促进了气体的逃脱以及熔体池中元素的均匀扩散。此外,预热可降低梯度层之间的键合面积,从而增强层之间的冶金键合特性并改善拉伸性能。与在室温下形成的Stellite-6/Inconel 718 FGM相比,平均屈服强度,平均拉伸强度以及在300°C形成的Stellite-6/Inconel 718 FGM的平均伸长率增加65.1 MPa,97 MPa,97 MPa和5.2%。但是,高初始温度将影响材料的硬度。在300°C时形成的星状-6/Inconel 718 FGM的平均硬度比在20°C下形成的stellite-6/Inconel 718 FGM的平均硬度低于26.9 hv(Vickers硬度)。