Solus Advanced Materials在高端电池箔技术方面拥有世界领先的竞争力,拥有4.5㎛薄型电池铜箔、高达70kgf/㎛的高强度电池铜箔、高达15%拉伸率的高伸长率电池铜箔制造技术。欧洲综合企业Volta Energy Solutions以这些技术为基础,生产符合全球标准的高品质电池铜箔,并迅速供应给欧洲和北美的客户。
摘要:电子束自由曲面制造是一种送丝直接能量沉积增材制造工艺,其中真空条件可确保对大气进行出色的屏蔽并能够加工高反应性材料。在本文中,该技术应用于 α + β 钛合金 Ti-6Al-4V,以确定适合坚固构建的工艺参数。基于所选工艺参数,单个焊珠的尺寸和稀释度之间的相关性导致重叠距离在焊珠宽度的 70-75% 范围内,从而产生具有均匀高度和线性堆积速率的多焊珠层。此外,使用交替对称焊接序列堆叠具有不同数量轨道的层允许制造墙壁和块等简单结构。显微镜研究表明,主要结构由外延生长的柱状前 β 晶粒组成,具有一些随机分散的宏观和微观孔隙。所开发的微观结构由马氏体和细小的 α 层状结构混合而成,硬度适中且均匀,为 334 HV,极限抗拉强度为 953 MPa,断裂伸长率较低,为 4.5%。随后的应力消除热处理可使硬度分布均匀,断裂伸长率延长至 9.5%,但由于热处理过程中产生了细小的 α 层状结构,极限强度降至 881 MPa。通过能量色散 X 射线衍射测量的残余应力表明,沉积后纵向拉伸应力为 200-450 MPa,而进行应力消除处理后应力几乎为零。
基于可持续发展策略和实际应用要求,至关重要的是发展高强度,可回收和燃气 - 降压聚氨酯(PU)弹性体。因此,具有充分的硼烷酯键和含有磷的组的动态性弹药弹性(PU-DP 1-7),可重新加工,高性能的聚氨酯弹性体(PU-DP 1-7)。PU-DP 1 - 7的化学结构通过傅立叶变换红外光谱法(FTIR)和X射线光电子光谱(XPS)证实。pu-dp 1 - 7显示在900 nm的波长下的透射率约为60%,磷和硼元素均匀分布在其表面内,证实了统一的交联网络的形成。含磷和硼隆的组的包含PU-DP 1-7具有垂直燃烧(UL-94)V-0等级,表明所需的阻燃性。此外,PU-DP 1-7的拉伸强度为42.7 MPa,在休息时的伸长率为616.9%,由于其网络中的丰富氢键,对各种底物具有很高的粘附强度。此外,动态硼酸酯键endow pu-dp 1 - 7具有Su Perior物理回收和形状内存性能。在130℃进行热压后,改革后的PU-DP 1-7胶片显示出在休息时伸长率的恢复效率的83.6%。这项工作提出了一种综合策略,可以通过引入含磷的片段和动态的硼烯酯键来创建具有出色的机械和形状 - 内存性能,具有出色的机械和形状 - 内存性能的综合策略。
在开发用于耐热和抗蠕变合金的线材+电弧增材制造 (WAAM) 工艺时,结构由镍基高温合金 Inconel 718 (IN718) 和 Inconel 625 (IN625) 构建。在本文中,使用等离子转移电弧工艺在这两种高温合金中沉积壁结构。在光学和 SEM 下分析微观结构;两种合金均显示出具有长柱状晶粒的典型树枝状结构,合金之间差异不大。研究结果表明,结构包括合金元素的明显偏析,具有潜在的金属间相,例如合金中还发现了 Laves 相和 δ 相,这表明 Nb 和 Mo 在晶界和树枝状区域偏析明显更多。这些合金还经过了室温机械测试,此外,IN625 样品在固溶和时效处理后进行了测试。硬度测量表明,与固溶状态下的锻造合金相比,WAAM 工艺通常可使材料硬度增加约 10%。与沉积状态相比,IN625 的热处理样品硬度增加了约 6%。IN625 的伸长率显示出更大的值。总体而言,IN718 的强度高于 IN625,而伸长率较低。对两种合金及其文献中所述的最大 UTS 和 YS 值进行比较后发现,WAAM 制造的 IN718 和 IN625 在沉积状态下可达到最大 UTS 的一半多一点,无需后处理。在 IN625 中测试的热处理工艺略微缩小了 UTS 性能的差距 3.5%。
热处理是一种显著改变材料性能的方法。当材料缺乏某些机械性能时,可以通过加热来改变其化学性能和微观结构。这有助于实现更好的屈服强度、延展性和韧性。本项目讨论了多种不同的热处理方法对几种材料的影响,以提高延展性和伸长率而不降低强度。所讨论的材料是高铝钢和 Strenx 700MC 钢,前者正在开发中,后者是市售钢。这些钢有望用作高延展性、高强度和第三代钢。热处理可以改变基础材料的机械性能,从而优化这些钢以用于垂直接入解决方案。
摘要:研究了含有石墨烯纳米片(GNS)的基于乙二烯 - 偏烯 - 烯烯 - 二烯单体(EPDM)单体(EPDM)单体(EPDM)的复合材料的机械,热和γ辐射衰减特性。还研究了聚乙烯乙二醇(PEG)作为兼容器来改善填充剂的分散体。结果表明,与EPDM相比,这些填充剂的综合使用导致机械性能的急剧增加,分别达到了伸缩强度和伸长率的123%和83%。相反,与基于EPDM/B/GN的复合材料相比,在包含EPDM GN和B的复合材料中添加PEG的复合材料具有较低的机械性能。然而,PEG的存在导致获得具有大量衰减系数的复合材料(EPDM/B/GNP),可对伽玛辐射(137 cs,662 keV)优于没有PEG的该复合材料。此外,复合EPDM,B和PEG在断裂时表现出伸长率153%,高于未填充的EPDM。此外,与未填充的EPDM相比,由100个PHR(III)氧化物(III)PHR组成的二元填充系统可导致EPDM复合材料的61%线性阻尼系数达到61%。分别使用扫描电子显微镜和能量分散X射线光谱获得的聚合物基质中形态和填充剂的状态的研究为理解影响伽马射线衰减特性的因素提供了有用的背景。最后,结果还表明,通过调整配方,可以调整用氧化物和石墨烯纳米纤维素增强的EPDM复合材料的机械和热性能。
具有量身定制的物理化学和生物学特征的组织工程支架的制造是生物医学工程中的一项相关任务。The present work was focused at the evaluation of the effect of fabrication approach (single-channel or multi-channel electrospinning) on the properties of the fabricated poly (lactic acid) (PLA)/poly (ε-caprolactone) (PCL) scaffolds with various polymer mass ratios (1/0, 2/1, 1/1, 1/2, and 0/1).使用扫描电子显微镜(SEM),水接触角度测量,傅立叶转换红外光谱(FTIR),X射线衍射(XRD),张力测试和内部繁殖型Mesememal Mesememal Mesememal septriment Mesement Angemement 使用扫描电子显微镜(SEM),水接触角度测量,水接触角度测量(FTIR)制造并进行了表征。 证明,多通道静电纺丝可以防止支架的聚合物组件之间的分子间相互作用,从而保留其晶体结构,这会影响支架的机械特征(尤其是导致伸长率差异2倍)。 证明了使用多通道静电纺丝制造的脚手架表面更好地粘着多能性间充质干细胞。使用扫描电子显微镜(SEM),水接触角度测量,水接触角度测量(FTIR)制造并进行了表征。证明,多通道静电纺丝可以防止支架的聚合物组件之间的分子间相互作用,从而保留其晶体结构,这会影响支架的机械特征(尤其是导致伸长率差异2倍)。证明了使用多通道静电纺丝制造的脚手架表面更好地粘着多能性间充质干细胞。
摘要 众所周知,晶粒细化剂可以调整微观结构并提高增材制造 (AM) 钛合金的机械性能。然而,Ni 添加对 AM 制造的 Ti-6Al-4V 合金的内在机制尚不十分清楚。这限制了它的工业应用。本研究系统地研究了 Ni 添加剂对激光辅助增材制造 (LAAM) 制造的 Ti-6Al-4V 合金的影响。结果表明,Ni 添加对 LAAM 制造的 Ti-6Al-4V 合金的微观结构演变产生三个关键影响。(a) Ni 添加剂显着细化了前 β 晶粒,这是由于凝固范围扩大所致。随着 Ni 添加量从 0 增加到 2.5 wt。%,原β晶粒的长轴长度和长宽比分别从1500 µ m和7减小到97.7 µ m和1.46。(b) Ni添加剂可以明显诱导球状α相的形成,这归因于β相和α相之间增强的浓度梯度。根据终止传质理论,这是球化驱动力。随着Ni添加量从0增加到2.5 wt,α板条的长宽比从4.14降低到2.79。%(c) Ni是一种众所周知的β稳定剂,它可以显著增加β相的体积分数。室温拉伸结果表明,随着 Ni 含量的增加,机械强度增加,伸长率几乎呈线性下降。使用改进的数学模型定量分析了强化机制。从结果可以看出,α 板条相和固溶体对本研究中 LAAM 构建的 Ti-6Al-4V-x Ni 合金的总屈服强度贡献最大。此外,随着 Ni 含量的增加,伸长率降低是由于大量固溶体 Ni 原子导致 β 相的变形能力下降。这些发现可以加速增材制造钛合金的开发。