DNA topoisomerase I acts as supercoiling sensor for transcription elongation in E. coli Authors: Vita Vidmar 1,2,3,4,# , Céline Borde 5,# , Lisa Bruno 5 , Maria Takacs 1,2,3,4 , Claire Batisse 1,2,3,4 , Charlotte Saint-André 1,2,3,4 , Chengjin Zhu 1,2,3,4,OlivierEspéli5,ValérieLamour1,2,3,4,*和Albert Weixlbaumer 1,2,3,4,*摘要:当DNA转录为RNA时,DNA Double Helix会不断解开,并为RNA Polymerase(RNAP)提供访问权限(RNAP)。由于RNAP的下游和上游的DNA过度和扭转,这将诱导DNA超螺旋作为转录长度的函数。使用单粒子冷冻EM和体内测定法,我们研究了细菌RNAP和DNA拓扑异构酶I(topoi)之间的关系,该酶消除了RNAP上游积累的负超高。topoi与RNAP的放松DNA上游结合,表明具有感官作用,等待负超级锅的形成,并涉及托皮伊(Topoi)功能域中的构象转换。在DNA底物上模仿了否定超螺旋的DNA,topoi螺纹将一条线束进入活跃位点进行裂解,同时将互补链与辅助结构域结合。,我们在转录RNAP的背景下提出了一个用于DNA松弛的综合模型。1综合结构生物学系,Institut degénétiqueet de BiologieMoléculaireet Cellulaire(IGBMC)2UniversitédeStrasbourg
以下几点突出了植物中主要双齿茎的八个主要部分。零件为:1。表皮2。皮下三。一般皮层4。内胚层5。周环6。血管链7。髓质或髓射线8。髓或髓质。DICOT词干:第1部分。表皮:表皮是茎的最外层。它由紧凑型伸长的细胞细胞组成,它们看起来在横截面中看起来是矩形桶形。细胞是透明的,没有叶绿体。
满足严格的要求,氢容器的压力阻力是由增强纤维支配的,但是树脂矩阵在提供环境外观保护(热,化学,撞击)以及疲劳/压力循环的耐药性方面起着关键作用。在85°C下进行严重的压力循环测试,GTR 13标准要求,实际上,树脂系统必须具有至少115-120°C的玻璃过渡温度(TG),即使在热/潮湿条件下,也必须避免过早故障。研究表明,在断裂时具有高机械强度和高伸长的树脂系统可以更好地支持压力循环引起的尺寸变化(应变),从而防止在最大额定压力下层压板内的裂纹启动。
高强度低合金(HSLA)钢已被广泛用作汽车的结构零件。由于需要减轻体重和抗腐烂的白色身体,因此镀锌HSLA钢的需求最高,高度为550MPa等级。在这项研究中,开发了具有550MPa屈服强度的镀锌HSLA钢。讨论了晶粒尺寸和降水对微结构和强度的影响以及镀锌冷条的锌涂层质量。结果表明,通过采用细粒度加强和降水加强,可以实现550MPa屈服强度和13%伸长的机械性能。可以通过控制冷滚动和退火过程来实现钢的理想微观结构,这导致晶粒尺寸为2〜5μm,沉淀物在矩阵中直径为20〜30nm。还表明,退火温度对微观结构和机械性能有重大影响,而冷滚动和缓慢冷却温度的降低比没有影响。此外,具有550MPA级的热浸镀锌HSLA钢具有良好的涂层质量。
洞穴生物代表了地球上最受研究和威胁的生物多样性之一。这些物种的特征是它们独特的特征,使它们能够在地下生存,包括伸长的附属物,眼睛和色素的丧失以及代谢减少。必须监测这些物种,以减轻进一步的物种损失并保护现有的洞穴生物多样性。一种现代方法,显示出对监测和检测物种的不可思议的希望是EDNA(环境DNA)。与传统方法相比,Edna可以产生更快,更可靠和具有成本效益的结果,尤其是对于难以使用传统方法研究的物种。在这项研究中,我们评估了埃德纳(Edna)在阿拉巴马州洞穴虾(Alabamae)地下栖息地(阿拉巴马州帕拉米亚斯(Palaemonias Alabamae))中检测和监测的功效,这是一种在亨斯维尔地区发现的联邦濒危物种。
摘要 积累在植物组织和结构(如腺毛和薄表皮层)表面的化合物被定义为渗出物、外部化合物和浅表化合物。它们表现出重要的保护活性——抗真菌、抗菌、拒食昆虫、杀幼虫、抗疟原虫和防紫外线。评估了从蜡菊花中获得的渗出物对黑麦草种子发芽和初始胚根伸长的抑制活性。该实验在培养皿中体外进行。在水-丙酮混合物(99.5:0.5)中,以 1、3、5、7 和 10 mg/mL 的浓度测定渗出物。用 GC/MS 分析渗出物的化学成分。发现浓度为 5 mg/mL 的渗出液可导致 90% 以上的种子发芽抑制。在相同浓度下,观察到根部生长被完全抑制。分泌物的主要生物活性成分被鉴定为黄酮苷元-柚皮素。本研究首次研究了H. arenarium对种子发芽的抑制活性。
脊髓损伤(SCI)通常会导致各种长期后遗症,而长期受伤的脊髓表现出难治性,显示对细胞移植疗法的反应有限。对我们的知识,尚无临床前研究报告一种治疗方法,结果超过了仅包括康复的治疗方法。在这项与SCI大鼠的研究中,我们提出了一种新型的联合疗法,涉及Semaphorin 3a抑制剂(SEMA3AI),该治疗增强了轴突再生,作为第三个治疗元件,结合了神经/祖/祖细胞的移植和修复。这种全面的治疗策略在Sci中心的宿主衍生神经元和少突胶质细胞分化方面取得了重大改善,即使在慢性损伤的脊髓中,也促进了轴突再生。与接受移植和康复治疗的动物相比,伸长的轴突建立了功能性电连接,从而导致运动迁移率的显着增强。结果,我们的联合移植,SEMA3AI和康复治疗有可能成为慢性SCI患者的重要一步,从而提高了他们恢复运动功能的能力。
抽象的可言位置被认为是最常发生的细胞DNA损伤,并且是自发产生的,也是由于化学或辐射对DNA的损害而产生的。与无碱性位点对DNA聚合酶的影响的丰富信息相反,这些病变与RNA聚合酶如何相互作用知之甚少。使用体外转录系统来确定无碱性位点和单链断裂对转板伸长的影响。DNA模板是构建的,其中包含来自两个不同启动子的独特位置放置在独特位置的单个障碍物或划痕,并由SP6和Escherichia coli RNA聚合酶转录。sp6 RNA聚体最初停滞在Abasic部位,随后,这些病变的有效旁路。大肠杆菌RNA聚合酶也绕过了无碱性位点。相比之下,在无碱性位点引起的单链破裂完全阻断了两个RNA聚合酶的进展。全长转录本的序列分析表明,SP6和大肠杆菌RNA聚合酶插入了原始的,即使不是精心抗拒的腺嘌呤残基与无碱性位点相反。这种FMDing表明,在转录水平上,无碱性位点在体内可能是高度诱变的。
简介PI3K/AKT/MTOR网络是一种关键的细胞内信号,该途径指导生理和病理条件下的细胞生长和代谢(1)。雷帕霉素(MTOR)进化保守的哺乳动物靶标是在哺乳动物细胞中表达的丝氨酸/苏氨酸激酶(2)。mTOR是MTORC1和MTORC2蛋白复合物中的关键蛋白(3),MTORC1调节参与蛋白质合成,基因表达,葡萄糖和脂质代谢和核苷酸生物合成的信号传导级联反应(4)。mTORC1磷酸化4E结合蛋白1(4EBP1)和S6激酶(S6K),涉及cap依赖性翻译起始和伸长的下游靶标(5)。在结节性硬化症复合物(TSC)肿瘤和多种癌症类型中发生的TSC1或TSC2的完全丧失(6-8)导致MTORC1的组成型非调节激活(9)。鉴于人类肿瘤中PI3K/AKT/MTOR信号的频繁激活,已经开发了几代MTOR抑制剂(1)。Rapalogs治疗了几种与TSC相关的肿瘤以及肾细胞癌(RCC)(10)。但是,旋转在治疗RCC,膀胱癌(BLCA),
摘要 SCAR/WAVE 蛋白和 Arp2/3 复合物在前缘组装分支肌动蛋白网络。SCAR/WAVE 的两种亚型 WAVE1 和 WAVE2 位于前缘,但它们是否发挥相似或不同的作用仍不清楚。此外,关于 WAVE1 对肌动蛋白丝伸长的 Arp2/3 独立生化活性的报道存在矛盾。为了在体内研究这一点,我们在 B16-F1 黑色素瘤细胞中分别和同时敲除 WAVE1 和 WAVE2 基因。我们证明 WAVE1 和 WAVE2 对于板状伪足的形成和运动是多余的。然而,WAVE2 KO 细胞的前缘肌动蛋白延伸率显著降低,而 WAVE1 KO 细胞的前缘肌动蛋白延伸率增加。WAVE1 KO 细胞中肌动蛋白延伸率的加快被更快的逆向流动所抵消,因此不会转化为更快的板状伪足突出。因此,WAVE1 限制了前缘肌动蛋白延伸的速度,并似乎将肌动蛋白网络与膜偶联以驱动突出。总体而言,这些结果表明 WAVE1 和 WAVE2 在促进 Arp2/3 依赖性肌动蛋白成核和板状伪足形成方面具有冗余作用,但在控制肌动蛋白网络延伸和利用网络生长进行细胞突出方面具有不同的作用。