控制律的开发和评估将通过集成在 B01 05 直升机上的 IBC 系统进行,该系统已由 ECD 和 ZFL 在 1990 年和 1991 年用于开环高次谐波控制飞行测试。与这些测试相比,现在还将评估闭环控制律,并将安装更强大的实验系统:增强执行器的控制权限、先进的传感器和测量设备以及用于 IBC 控制律的快速坚固计算机。该计划这一部分的预期结果是:有效的控制律,用于减少机舱振动和叶片涡流相互作用 (BVI) 引起的外部噪声,并研究进一步控制律的潜力,以实现旋翼稳定、失速延迟、负载和功率降低。
Item Description Item Description Item Description 1 Motor cable clamp 10 Ethernet (PORT2) RJ45 connector 19 DC bus (DC) connector 2 Ground terminal 11 Zero-stack mounting tab/cutout 20 24V control input power (CP) connector 3 Motor feedback (MF) connector - A 12 Module status indicator 21 Motor brake (BC) connector - A 4 Motor feedback (MF) connector - B 13 Network status indicator 22 Motor power (MP) connector - A 5 Universal feedback (UFB) connector - A 14 LCD display 23 Motor power (MP) connector - B 6 Universal feedback (UFB) connector - B 15 Navigation pushbuttons 24 Motor brake (BC) connector - B 7 Digital inputs (IOD) connector - A 16 Link speed status indicators 25 Cooling fan 8 Digital inputs (IOD) connector - B 17 Link/Activity status indicators 9 Ethernet (port1)RJ45连接器18安全扭矩OFF(STO)连接器
图 2 显示了支持各种分析要求的建模活动的基本流程。所有模型均从适当的数据库发展而来。为了支持了解车辆响应特性和快速设计有效可实现控制律所需的许多参数分析,需要低阶结构模型。空气动力学公式需要反映可用的风洞测试数据,特别是关于俯仰稳定性的数据,因为飞翼设计在俯仰方面本质上是边缘稳定或不稳定的。这些模型还需要能够包括执行系统和传感器的代表性模型。MSC/NASTRAN 是进行建模活动和图 3 半跨度有限元模型的主要工具
第 1 章 开始关于 Kinetix 5300 伺服驱动系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 典型通信配置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 线性拓扑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... .... .... 24
机器人臂是由连接接头连接的链路的移动链组成的设备。电动机经常用于移动每个机器人臂接头。可以在空间中自由移动的最终效应器通常连接到固定的机器人平台的一端。机器人武器可以以速度和精度进行重复操作,远远超过了人类操作员。如今,机器人臂系统在全球范围内广泛使用,以提高行业制造过程的质量和效率。 机器人臂系统的典型应用是组装,绘画,焊接,拾取和放置操作等。 此外,许多行业都采用机器人武器来从事各种工作,例如选择和推杆,绘画和材料处理。 但是,完成这些工作的最具挑战性的问题之一是确定机器人部门最终效力器的目标位置。 有两种分析机器人臂运动的方法:前进和逆运动分析。 基于Visual Servo算法,本研究使用反向运动学来执行挑选和放置操作。 首先,实现了一种对象识别算法来识别要掌握的对象。 然后,避免发生任何障碍的算法。 研究的发现表明,在所有三种算法中都获得了良好的系统性能:首先,对象识别算法,第二,障碍避免算法,最后是基于Visual Servo的挑选和位置操作。 因此,可以得出结论,机器人臂的视觉伺服算法适用于采摘应用。如今,机器人臂系统在全球范围内广泛使用,以提高行业制造过程的质量和效率。机器人臂系统的典型应用是组装,绘画,焊接,拾取和放置操作等。此外,许多行业都采用机器人武器来从事各种工作,例如选择和推杆,绘画和材料处理。但是,完成这些工作的最具挑战性的问题之一是确定机器人部门最终效力器的目标位置。有两种分析机器人臂运动的方法:前进和逆运动分析。基于Visual Servo算法,本研究使用反向运动学来执行挑选和放置操作。首先,实现了一种对象识别算法来识别要掌握的对象。然后,避免发生任何障碍的算法。研究的发现表明,在所有三种算法中都获得了良好的系统性能:首先,对象识别算法,第二,障碍避免算法,最后是基于Visual Servo的挑选和位置操作。因此,可以得出结论,机器人臂的视觉伺服算法适用于采摘应用。
摘要:大约四十年前,它基于逆模型的传递函数,基于逆模型的传递函数。实际上实现了传输函数的倒数,将过滤器添加到其上,以消除高频干扰信号。此基于反向模型的干扰观察者(IMBDO)设计的关键步骤是使用适当参数的滤波器选择。本文提出了一个基于直接模型(DMBDO)的干扰观察者,并且可以无需任何其他过滤器而工作。它简化了设计和实现的控制器代码。IMBDO和DMBDO的离散时间实现是通过简单的基于Internet的伺服系统在非真实时间控制环境中比较的。检查了非均等抽样的效果。
本文提出了一种针对移动操纵器系统(MMS)的新控制策略,该策略集成了基于图像的视觉伺服(IBVS),以解决操作限制和安全限制。基于控制屏障功能(CBF)的概念的拟议方法提供了一种解决方案,以应对各种操作挑战,包括可见性约束,操纵器关节限制,预定义的系统速度界限和系统动态不确定性。提出的控制策略是两层结构,其中第一级CBF-IBVS控制器计算控制命令,并考虑到视野(FOV)约束。通过利用空空间技术,这些命令被转移到MMS的联合配置,同时考虑系统操作限制。随后在第二级中,用于整个MMS使用的CBF速度控制器对关节级的命令进行跟踪,以确保遵守预定义的系统的速度限制以及整个组合系统动力学的安全性。拟议的控制策略提供了出色的瞬态和稳态响应,并提高了对干扰和建模不确定性的弹性。此外,由于其计算复杂性较低,因此可以在板载计算系统上轻松实现,从而促进实时操作。通过仿真结果说明了拟议策略的有效性,与常规IBVS方法相比,该结果揭示了增强的性能和系统安全性。结果表明,所提出的方法可有效解决移动操纵器系统的具有挑战性的操作限制和安全限制,使其适合于实际应用。
摘要:伺服控制在位置跟随方式下要求具有快速的跟随性能和较高的稳态精度,特殊环境应用的伺服对电机的性能和可靠性要求更为严格。伺服系统的发展经历了最初的电液伺服,采用直流有刷电机,其速度、可靠性和使用寿命都比较有限。如今的交流伺服系统主要是交流异步或永磁同步电机,伺服系统的发展越来越朝着交流化、永磁化、智能化、集成化、小型化、网络化、模块化的方向发展。本文主要研究永磁同步交流电机的伺服控制。永磁同步交流电机分为永磁同步电机和永磁无刷直流电机。研究发现基于永磁同步电机的伺服控制在跟随性能和稳态精度上优于基于永磁无刷直流电机的伺服控制。
简介 感谢您选择三菱数控装置。本使用说明书介绍了使用本交流伺服/主轴时的操作和注意事项。操作不当可能会导致不可预见的事故,因此请务必仔细阅读本使用说明书以确保正确使用。确保将本使用说明书交付给最终用户。始终将本说明书存放在安全的地方。为了确认本说明书中描述的所有功能规格是否适用,请参阅每个 CNC 的规格。阅读本说明书的注意事项 (1) 由于本规格说明书的描述涉及一般 NC,因此有关各个机床的规格,请参阅各个机器制造商发行的说明书。机器制造商发行的说明书中描述的“限制”和“可用功能”优先于本说明书中的描述。(2) 本手册尽可能多地描述了特殊操作,但请注意,本手册中未提及的项目无法执行。
数字伺服驱动器和无刷数字交流伺服电机相结合,形成数字矢量伺服驱动系统,是所有 MultiCam Digital Express 机器的标准配置。这些驱动系统无缝集成位置、速度和扭矩环路,提供无与伦比的跟踪精度、平滑度和可靠性。MultiCam 伺服驱动机器中使用的驱动器是高性能驱动器系列中的最新产品,它通过利用这种无缝协调的方式推动了最先进的技术,允许实时共享所有信息,以便所有系统功能在任何情况下都能协同工作。例如,如果扭矩环路检测到交流伺服电机已达到 100% 扭矩输出,则立即将其传递到伺服补偿器上游,系统提供协调响应,保持精确控制。您将实现更紧密的跟踪、更平稳的运动和更快的快速移动 - 所有这些都能带来卓越的机器吞吐量和可靠性。MultiCam 使用的数字交流伺服驱动系统不仅具有强大的性能,而且 MTBF 数字也让竞争对手汗颜。数字驱动系统的 MTBF 超过 80 年!