多药耐药性结核病(MDR-TB)被定义为异念珠菌和利福平的感染。在全球范围内,有132222个报告了2020年的MDR-TB病例。研究表明,先前的结核病治疗和治疗中断被认为是MDR-TB的主要原因[1,2]。流行病学家将病例对照研究定义为偏见的采样设计。病例对照研究的设计着重于参数逻辑回归,以计算一组协变量的调整后的奇数比(或)。但是,为了建立因果估计人群,或应估算。流行病学家将案例控制定义为与目标人群相比患有疾病的人比例的偏见。病例对照研究的设计着重于参数逻辑回归,以计算一组协变量上的或条件。要构建因果估计,我们必须估计边缘人口或[3]。目标最大似然估计(TMLE)是一种双重鲁棒方法,使用机器学习算法来最大程度地减少偏见的风险[4]。逆概率处理权重(IPTW)是一种因果方法,用于通过创建检查治疗对暴露的影响的模拟组来调整时变的混杂因素。IPTW方法基于侵害的概率,因为混杂因素被称为倾向评分(SP)[5]。 iptw在病例对照研究中有许多缺点,因此估计器无法在有限样本中对无症状效率和效率问题提出任何主张。IPTW方法基于侵害的概率,因为混杂因素被称为倾向评分(SP)[5]。iptw在病例对照研究中有许多缺点,因此估计器无法在有限样本中对无症状效率和效率问题提出任何主张。此外,IPTW在某些阶层中通过一组协变量定义的治疗或暴露组非常罕见时发生的所谓阳性违规行为不利[6]。因此,病例对照加权TMLE(CCW-TMLE)方法提供了双重鲁棒方法来估计无偏见的参数估计。如果给定暴露和协变量的结果模型的任何预期参数或给定协变量的暴露模型是正确的[7],则此方法是一致的。ccw-tmle需要了解结果的患病率概率,以减少偏见的设计[8]。此外,CCW-TMLE估计了各种参数,例如风险比和风险差异,这些参数在病例控制研究的传统分析中不可用。此外,TMLE可以估计边际因果效应,正确的规范和倾向评分。TMLE估计所有参数,假设每个人的暴露状态不会影响任何其他人的潜在结果。主要因果假设是没有未衡量的混杂因素。因此,已经测量了暴露和外来的常见原因[9]。在分析过程中有两种广泛的方法可以控制混杂。第一种方法是使用标准回归模型,第二种方法是遵循因果方法。标准回归模型无法在存在可能的混杂或相互作用和协变量之间的混杂或相互作用的情况下估算暴露的平均因果效应。原因是,此方法假设暴露者和混杂因素之间没有相互作用来估计池效应。更重要的是,标准回归模型无法调整时间变化