背景 膝关节骨关节炎的临床问题是,尽管一些新疗法安全有效,但反应各不相同,定义预测个体反应的特征仍然是一个挑战。基于参数化量子电路 (PQC) 的变分量子经典和量子机器学习 (QML) 算法是一种很有前途的实验技术,可以提高基于存储在大型非结构化数据库中的真实数据的精准医疗临床决策支持系统 (CDSS) 的效率。在本文中,我们测试了一个量子神经网络 (QNN) 应用程序,以支持精准数据驱动的临床决策,为晚期膝关节骨关节炎选择个性化治疗。方法在征得患者同意并经研究伦理委员会批准后,我们收集了 170 名符合膝关节置换术条件的患者(Kellgren-Lawrence 分级 ≥ 3、OKS 27、年龄 ≥ 64 和特发性关节炎病因)在 2 年内接受单次微碎片脂肪注射治疗前后的临床人口统计数据。为减轻性别偏见,性别类别保持平衡(76 名男性,94 名女性)。OKS 改善 ≥ 7 的患者被视为有反应者。我们在随机选择的 113 名患者训练子集上训练了 QNN 分类器,以在 1 年时根据疼痛和功能对反应者与无反应者(73 R,40 NR)进行分类。异常值从训练数据集中隐藏,但从验证集中保留。我们在 IBM 量子模拟器上运行了 QNN 分类器,以减少由于噪声造成的错误。结果 我们在随机选择的 57 名患者(34 名 R,23 名 NR)测试子集(包括异常值)上测试了我们的 QNN 分类器。无信息率为 0.59。我们的应用程序正确地将 34 名反应者中的 28 名和 23 名无反应者中的 6 名分类为正确(敏感性 = 0.82,特异性 = 0.26,F1 统计量 = 0.71)。阳性(LR+)和阴性(LR-)似然比分别为 1.11 和 0.68。诊断优势比 (DOR) 等于 2。结论 在相对较小的膝关节骨关节炎数据集上测试的 QNN 分类器的初步临床和技术结果表明,量子机器学习应用于数据驱动的临床决策是一项很有前途的技术。我们的研究结果需要通过更大的真实世界非结构化数据集进行进一步的研究验证,并通过人工智能临床试验进行临床验证,以测试模型的功效、安全性、临床意义和在公共卫生层面的相关性。
[1] M.[2] H. Aoyama,K。Ishikawa,J。Seki,M。Okamura,S。Ishimura和Y. Satsumi,“矿山检测机器人系统的开发”,《国际高级机器人系统杂志》,第1卷。4,不。2,p。 25,2007。[在线]。可用:https://doi.org/10.5772/5693 [3] S. B. I Badia,U。Bernardet,A。Guanella,P.Pyk和P.4,不。2,p。 21,2007。[在线]。可用:https://doi.org/10.5772/5697 [4] ICBL-CMC,“地雷监视器2015”,禁止地雷的国际运动 - 加拿大集群弹药联盟,加拿大,2015年。[5] I. Makki,R。Younes,C。Francis,T。Bianchi和M. Zucchetti,“使用高光谱成像进行地雷检测的调查”,ISPRS摄影测量和遥感杂志,第1卷。124,pp。40 - 53,2017。[在线]。Available: http://www.sciencedirect.com/science/article/pii/S0924271616306451 [6] D. Guelle, M. Gaal, M. Bertovic, C. Mueller, M. Scharmach, and M. Pavlovic, “South-east europe interim report field trial croatia: Itep- project systematic test and evaluation of metal detectors - STEMD,”联邦材料研究与测试研究所(BAM),柏林,德国,2007年。[7] C. Castiblanco,J。Rodriguez,I。Mondrag´on,C。Parra和J. Colorado,用于爆炸性地雷检测的空中无人机,2014年1月1日,第1卷。253,pp。107–114。7,不。3,pp。813–819,2014。[8] X.[9] C. P. Gooneratne,S。C。Mukhopahyay和G. S. Gupta,“地雷检测的传感技术的审查:基于车辆的方法:无人车的方法”,pp。401–407,2004年12月。[10] P. Gao和L. M. Collins,“陆地矿山和小型未探索的陆地矿山的二维一般性似然比测试”,Signal Processing,第1卷。80,不。8,pp。1669 - 1686,2000。[在线]。可用:http://www.sciendirect.com/science/article/pii/s0165168400001006 [11]7,pp。107 259–107 269,2019。[12] J. Colorado,I。Mondragon,J。Rodriguez和C. Castiblanco,“地理映射和视觉缝制,以使用低成本无人机来支持地雷检测”,《国际早期机器人系统杂志》,第1卷。12,否。9,p。 125,2015。[在线]。可用:https://doi.org/10.5772/61236 [13] K. Kuru,D。Ansell,W。Khan,W。Khan和H. Yetgin,“分析和优化无人驾驶的物流群:智能交付平台:IEEE EEEE Access,第1卷。7,pp。15 804–31,2019。[14] K. Kuru,“使用新颖的框架计划智慧城市的未来,以完全自动的无人驾驶飞机进行,” IEEE Access,第1卷。9,pp。6571–6595,2021。[15] K. Kuru,D。Ansell,D。Jones,B。Watkinson,J。M. Pinder,J。A. Hill,E。Muzzall,C。Tinker-Mill,K。Stevens和A. Gardner,“使用自动驾驶无人驾驶航空车对牲畜进行智能的空降监测”,在第11届欧洲精密牲畜耕种会议上,2024年。[16] K. Kuru和H. Yetgin,“新工业革命中先进的机电一体化系统的转变:一切自动化(AOE)的新颖框架”,IEEE Access,第1卷。7,pp。41 395–41 415,2019。[17] K. Kuru,“地理分布的智能管理:在锻造云平台(FCP)上作为服务(DINSAA)的深入见解”,《平行与分布式计算》,第1卷。149,pp。103–118,3月2021。[18] L.-S. Yoo,J.-H。 Lee,Y.-K。 Lee,S.-K。 Jung和Y. Choi,“无人机磁力机系统在非军事区的军事矿山检测中的应用”,《传感器》,第1卷。21,否。9,2021。[在线]。可用:https://www.mdpi.com/1424-8220/21/9/3175 [19] L.-S. Yoo,J.-H。 Lee,S.-H。 KO,S.-K。 Jung,S.-H。李和Y.-K。 Lee,“装有磁力计的无人机检测地雷”,IEEE地球科学和遥感信件,第1卷。17,否。12,pp。2035–2039,2020。[20] Jirigalatu,V。Krishna,E。LimaSim〜oes Da Silva和A. Dossing,“使用混合无人驾驶飞机(UAV)(无人机)的可移植机载磁力测定系统的磁干扰实验”,《地球仪器仪器,方法,方法和数据系统》,第1卷。10,否。1,pp。25–34,2021。[在线]。10,否。1,pp。可用:https://gi.copernicus.org/articles/10/10/25/2021/ [21] L. E. Tuck,C。Samson,C。Lalibert´e和M. Cunningham,“磁干扰图映射四种无人飞机系统的无人飞机系统,用于空气磁性测量,地理位置仪器,”地理学仪器系统,”系统,数据,方法,方法,方法,方法,方法,方法,方法,方法,方法。101–112,2021。[在线]。可用:https://gi.copernicus.org/articles/10/10/101/2021/ [22] O. Maidanyk,Y。Meleshko和S. Shymko,“研究四倍体工位设计的影响及其在地面对象监控过程中的Quadrocopter Design及其对质量的质量的影响,“先进信息系统”,“先进信息系统”,第1卷。5,不。4,p。 64–69,2021年12月。[在线]。可用:http://dx.doi.org/10.20998/2522-9052.2021.4.4.4.10 [23] K. Kuru,“使用磁力计集成无人机和智能应用程序的地雷场磁场映射”,2024年。[在线]。可用:https://dx.doi.org/10.21227/ebny-b828 [24] K. Kuru,“元社会:使用智能城市数字双胞胎迈向沉浸式城市元网络,”,IEEE Access,第1卷。11,pp。43 844–68,2023。[25] K. Kuru和D. Ansell,“ Tcitysmartf:将城市转变为智能城市的全面系统框架”,IEEE Access,第1卷。8,pp。18 615–18 644,2020。[26] K. Kuru,D。Ansell,B。Jon Watkinson,D。Jones,A。Sujit,J。M. Pinder和C. L. Tinker-Mill,“智能自动化,快速,快速安全的地雷和未爆炸的军械法官(UXO)检测(UXO)检测,使用多个传感器进行衡量的仪器,在自动驾驶员上进行量子,iNemos and triment and trimose and imanee everrone and iever> ieee eyee eyee eyee eyee everient 9,pp。 923–948,2021。 transp。 Syst。,卷。9,pp。923–948,2021。transp。Syst。,卷。[27] K. Kuru和W. Khan,“一个与智能城市的完全自动地面车辆协同整合的框架”,IEEE Access,第1卷。[28] K. Kuru,“在城市环境中具有完全自动的自动驾驶汽车的人类触觉触觉近距离的概念化”,IEEE Open J. Intell。2,pp。448–69,2021。[29] K. Kuru,“自动驾驶和车辆决策的传感器和传感器融合”,2023年。[30] K. Kuru,“ Trustfsdv:建立和维持对自动驾驶汽车的信任的框架”,IEEE Access,第1卷。10,pp。82 814–82 833,2022。[31] K. Kuru,“对城市环境中自动驾驶汽车的多目标深钢筋学习奖励功能的定义”,IEEE Trans。车辆。Technol。,卷。11,pp。1-12,3月2024。