表征功率器件的击穿前行为对于故障机制的寿命建模至关重要,其中主要驱动力是碰撞电离。特别地,设计坚固的功率器件并定义其安全工作区需要定量表征反向偏置结中的电荷倍增。这对于像陆地宇宙射线产生的单粒子烧毁 (SEB) 这样的机制尤其必不可少,其中撞击辐射通过碰撞电离在反向偏置器件中产生大量电荷,该电荷被传输并最终通过局部电场倍增。对抗 SEB 的主要技术措施是在设计阶段进行现场定制以及在器件使用过程中降低反向/阻塞偏置。在这种情况下,通常使用载流子倍增开始的电压偏置作为定义工作条件下电压降额标准的标准 [1、2]。在实际应用中,降额系数通常在器件额定电压 V rated 的 50% 到 80% 之间。定义正确的降额系数至关重要。如果设置得太低,则需要具有更高 V 额定值的器件,从而导致更高的损耗和成本。相反,如果设置得太高,则导致的现场故障率可能变得过高。目前,降额系数是通过寿命测试或
载流子倍增因子的特性是设计坚固可靠的功率半导体器件以及评估其对地面宇宙辐射引起故障的敏感性的关键问题。本文提出了一种低温恒温装置,以将使用来自 Am 241 放射源的软伽马辐射的非侵入式电荷谱技术应用于广泛的 Si 和 SiC 器件。本文提供了一种关系,将液氮温度下测得的倍增因子转换为环境温度下测得的倍增因子。本文提出了一种专用的模拟方案,将 TCAD 和 Monte Carlo 工具结合起来,以预测收集到的电荷的光谱并定位倍增因子的热点。最后,在强调了电荷倍增因子与地面宇宙辐射下的功率器件故障率之间的相关性之后,建议将本技术作为评估安全操作区的补充方法。
[ 1] 疾病控制与预防中心。(2020 年 12 月 7 日)。3D 打印工作安全。疾病预防控制中心。[2] Rooney, M. K., Rosenberg, D. M., Braunstein, S., Cunha, A., Damato, A. L., Ehler, E., Pawlicki, T., Robar, J., Tatebe, K., & Golden, D. W. (2020)。放射肿瘤学中的三维打印:文献系统综述。应用临床医学物理学杂志,21(8),15–26 [3] 太空 3D 打印。Aniwaa。(2021 年 8 月 5 日) [4] 原装 Prusa i3 MK3S+ 3D 打印机图片。(n.d.)。Prusa 3D。检索日期:2023 年 8 月 1 日 [5] 艺术家对地球磁层的演绎。(2007)。欧洲航天局。检索日期:2023 年 8 月 1 日 [6] Sherwin Emiliano。(2021 年 6 月 20 日)。[2021] 3D 打印机灯丝多少钱?MonoFilament DIRECT [7] P., M. (2022 年 8 月 8 日)。Pla 与 PETG:您应该选择哪种材料?3Dnatives [8] 文件:polylactid sceletal.svg。Wikimedia Commons。(n.d.-b) [9] 文件:Polyethyleneterephthalate.svg。Wikimedia Commons。(n.d.-a) [10] Junaedi, H., Albahkali, E., Baig, M., Dawood, A., & Almajid, A.(2020)。短碳纤维增强聚丙烯复合材料的延性至脆性转变。聚合物技术进展,2020 年,1-10 [11] https://www.worldoftest.com/electro-mechanical-dual-column-universal-testing-machine-qm-100200300500。(n.d.)。Qualitest。2023 年 8 月 3 日检索 [12] Wady, Paul, et al.“电离辐射对 3D 打印塑料的机械和结构性能的影响。” Additive Manufacturing,vol.31,2020,第 100907 页
摘要目的:这项研究的主要目的是评估大型现场镉泰特脲(CZT)摄像机在单个photon发射计算机断层扫描(SPECT)图像(SPECT)图像上估计甲状腺摄取(TU)的能力,而与平面相比,与平面校正相比,与平面相比,与平面相比,与平面相比,与平面相比,与平面相比,与平面相比,与平面相比,与平面相比,这是一系列23个对定对不到的。次要目标是确定示踪剂给药的辐射剂量和其他计算机断层扫描(CT)扫描。方法:使用甲状腺幻影,用于平面,Tomo-AC和Tomo-NoAC图像确定跨校准因子。然后,在5个拟人化幻像上进行以甲状腺为中心的平面和SPECT/CT,活性在0.4至10 MBQ上进行,在服用79.2±3.7 MBQ后[99m TC] TC] - 特雷切酸酯的23例患者。我们估计拟人化幻象的绝对甲状腺活性(ATHA)和患者的TU。辐射剂量还使用国际放射学保护委员会(ICRP)报告和VirtualDose TM CT软件确定。结果:对于Planar,Tomo-AC和Tomo-NoAC图像,跨校准因子分别为66.2±4.9、60.7±0.7和26.5±0.3计数/(MBQ S)。对平面,Tomo-AC和Tomo-NoAC图像的理论和估计的ATHA在统计上高度相关(r <0.99; p <10 –4),理论ATHA和估计的ATHA之间的相对百分比差异为(8.6±17.8)(8.6±17.8),(8.6±17.8),(-1.3±5.2)和(-1.3±5.2)和(12.8±5.7±5.7)%,相应相差。有效和您的ROID吸收剂量分别为(0.34 ct + 0.95 nm)MSV和(3.88 ct + 1.74 nm)MGY。基于不同图像对(平面与Tomo-Ac,Planar vs Tomo-Noac和Tomo-Ac vs Tomo-Noac)之间的TU进行比较显示出统计学上很重要的相关性(r = 0.972、0.961和0.961和0.935; p <10 –3)。结论:在新一代CZT大型摄像机上使用平面和SPECT/CT获取的ATAS估计是可行的。此外,在Spect/ct
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
背景:脑电图 (EEG) 是一种关键的非侵入性工具,它可以以毫秒级的精度捕捉脑信号,并能够实时监测个人的精神状态。从这些 EEG 信号中提取适当的生物标志物并将其呈现在神经反馈回路中,为促进神经补偿机制提供了一种独特的途径。这种方法使个人能够熟练地调节他们的大脑活动。近年来,人们已经发现了与衰老相关的神经生物标志物,凸显了神经调节在老年人大脑活动方面的潜力。方法和目标:在基于 EEG 的脑机接口框架内,本研究重点关注了衰老大脑中可能受到干扰的三种神经生物标志物:峰值 Alpha 频率、Gamma 波段同步和 Theta/Beta 比率。主要目标有两个:(1)通过一项严格设计的双盲、安慰剂对照研究,研究主观记忆力不佳的老年人是否可以通过脑电图神经反馈训练学会调节他们的大脑活动;(2)探索这种神经调节可能带来的认知增强。结果:在接受脑电图神经反馈训练的组中,观察到了伽马波段同步生物标志物的显著自我调节,这种调节对许多高级认知功能至关重要,并且已知会随着年龄的增长而下降,在阿尔茨海默病 (AD) 中下降得更厉害。这种效果与接受假反馈的受试者形成鲜明对比。虽然这种神经调节并不直接影响认知能力,如通过训练前和训练后的神经心理学测试所评估的那样,但研究开始时所有受试者的高基线认知表现可能是造成这一结果的原因。结论:这项双盲研究的结果与成功神经调节的关键标准相符,凸显了伽马波段同步在这一过程中的巨大潜力。这一重要成果鼓励进一步探索针对这一特定神经生物标志物的脑电图神经反馈,将其作为一种有希望的干预措施,以对抗通常伴随大脑衰老而出现的认知能力下降,并最终改变 AD 的进展。
描述伽马 - 正交匹配追踪(伽马型)是最近建议对OMP特征选择算法的修改,用于广泛的响应变量。包装提供了许多替代回归模型,例如线性,健壮,生存,多元等,包括K折叠的交叉验证。参考文献:Tsagris M.,Papadovasilakis Z.,Lakio-taki K.和Tsamardinos I.(2018)。``````''sub-sion数据的有效特征选择:要使用哪种算法?''Biorxiv。。Tsagris M.,Papadovasi Lakis Z.,Lakiotaki K.和Tsamardinos I.(2022)。``用于针对基因表达数据的功能分配的伽马型算法''。IEEE/ACM关于计算双学和生物信息学的交易19(2):1214---1224。。
化学疗法的系统性会导致广泛影响患者生活质量的广泛副作用。这项研究提出了一个新型框架,将卷积神经网络(CNN)与精确的伽马射线递送系统相结合,以选择性地靶向恶性细胞,从而最大程度地减少对健康组织的附带损害。在12,000个注释的成像数据集上对基于RESNET-50的CNN进行了培训,并与用于实时靶向的机器人辐射系统集成在一起。对合成组织模型的实验验证表明,健康组织损伤降低了92%,报告的副作用降低了78%。统计分析确认模型灵敏度(97.2%),特异性(94.8%)和提高的治疗精度。这项研究为推进个性化肿瘤学并减少化学疗法的身体和情感损失奠定了基础。
摘要 — 伽马射线模块 (GMOD) 是一项用于探测低地球轨道伽马射线爆发的实验,是 2-U 立方体卫星 EIRSAT-1 上的主要科学有效载荷。GMOD 包括一个与硅光电倍增管耦合的溴化铈闪烁体,由定制的 ASIC 处理和数字化。GMOD 主板上的定制固件已设计、实施和测试,用于管理实验的 MSP430 微处理器,包括系统的读出、存储和配置。该固件已在一系列实验中得到验证,这些实验测试了主要时间标记事件 (TTE) 数据在 50 Hz 至 1 kHz 的实际输入探测器触发频率范围内的响应。研究了固件的功耗和成功接收和传输数据包到机载计算机的能力。实验表明,在标准传输模式下,高达 1 kHz 的数据包丢失率低于 1%,功率不超过 31 mW。所展示的传输性能和功耗均在此 CubeSat 仪器所需的范围内。索引术语 —CubeSat、伽马射线、探测器、伽马射线爆发、欧洲航天局“飞向你的卫星!”计划