摘要 量子探测是利用简单量子系统与复杂环境相互作用来提取某些环境参数(例如环境温度或其光谱密度)的精确信息的技术。在这里,我们分析了单量子比特探测器在表征热平衡下的欧姆玻色子环境方面的性能。特别是,我们分析了调整探测器与环境之间的相互作用哈密顿量的影响,超越了传统的纯相位失调范式。在弱耦合和短时间范围内,我们以分析方式处理探测器的动力学,而在强耦合和长时间范围内则采用数值模拟。然后,我们评估量子 Fisher 信息以估计截止频率和环境温度。我们的结果提供了明确的证据,表明纯相位失调不是最佳的,除非我们将注意力集中在短时间内。特别是,我们发现了几种工作方式,其中横向相互作用的存在提高了最大可达到的精度,即增加了量子 Fisher 信息。我们还探讨了探针的初始状态和探针特征频率在确定估计精度中的作用,从而为设计优化检测以在量子水平上表征玻色子环境提供定量指导。
在本研究中,我们创建了一个具有两种刺激类型的 8 命令 P300 触觉 BCI,在经过少量改动的消费者盲文显示器上运行,并在 10 名盲人和 10 名视力正常者身上进行了测试。盲人受试者的准确率中位数比视力正常者高 27%(p < 0.05),证明盲人受试者不仅能够使用触觉 BCI,而且还能取得优于视力正常者的效果。具有最佳刺激类型的盲人组的准确率中位数达到了 95%。组间事件相关电位的差异位于刺激后 300 毫秒之前的额中部位点,与早期认知 ERP 成分相对应。盲人的 ERP 幅度更高、延迟更短。这个结果在不同触觉刺激的实验条件下都是一致的。盲人的分类表现与盲文阅读速度相关。这使得我们能够讨论视力丧失后感觉补偿过程中的可塑性变化机制及其对个人感知经验的依赖性。