设计高活性催化剂的关键是确定活性的来源。然而,这仍然是一个挑战。[8,9] 特定催化剂的活性传统上与其表面性质有关。因此,具有大表面积、良好导电性和高迁移率的材料被认为是良好的催化剂,因为它们具有丰富的活性位点,有利于氧化还原反应中中间体的吸附和电子转移。这是广泛使用的催化剂合成策略的动机,例如纳米结构化、掺杂、合金化或添加缺陷。每种方法都旨在暴露优先晶体表面或对其进行工程改造以提高其活性。[10–12] 然而,从设计的角度快速准确地确定活性位点的位置仍然是一项艰巨的任务,这使得从许多潜在的有趣材料中发现高性能催化剂成为一项挑战。拓扑材料具有稳健的表面态和高迁移率的无质量电子。 [13–15] 此外,无论是从理论还是实验角度,许多最先进的催化剂(如 Pt、Pd、Cu、Au、IrO 2 和 RuO 2 )都被认为具有拓扑衍生的表面态 (TSS)。[16,17] 因此,有证据表明 TSS 在催化反应中发挥着重要作用。[18,19] 此类状态主要由
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2020 年 6 月 12 日发布。;https://doi.org/10.1101/2020.06.12.147827 doi:bioRxiv preprint
氯化溶剂羽流的修复是一项艰巨的技术挑战,因为只有少数几个地点已经证实能够将地下水完全恢复到原始状态。本情况说明书总结了造成这一困难的一个关键因素 - 基质扩散。基质扩散是地下水中的污染物最初从高渗透性区域(例如砂砾)中浓度较高的区域迁移到低渗透性介质(例如黏土砂、粉砂和粘土)的过程。当高渗透性区域的地下水羽流浓度降低时,这种扩散过程可以逆向发生(“反向扩散”),并且在主要污染源被移除或控制后很长一段时间内,可能成为难以管理的次要污染源。
1。ST Microelectronics completes acquisition of Norstel AB, a SiC wafer manufacturer, ST Microelectronics, 2019/12/2: https://www.st.com/content/st_com/ja/about/ media-center/press-item.html/c2930.html 2.ROHM集团Sicrystal和St Microelectronics同意提供碳化硅(SIC)Wafers多年来,ST Microelectronics,2020/1/15:https://newsroom.st.com/ja/ja/ja/media-ia-center/media-center/press-center/press-item/press-item.html/c2936.html,3。3.cree |。ST Microelectronics在意大利建立了新的集成SIC WAFER工厂,ST Microelectronics,2022/10/5:https://newsroom.st.com/ja/ja/media-center/media-center/press-item.htm.html/ c3124.html 5。Stmicro在意大利建立新的SIC WAFER工厂,在欧洲首次,Nikkei Crosstech,2022/10/18:https://xtps://xtech.nikkei.com/atcl/news/news/news/news/news/13938/13938/ 6.Infineon和Cree同意长期供应Sic Wafers,Infineon,2018/3/16:https://www.infineon.com/cmms/cmms/jp/jp/jp/jp/about-infineon/press/press/press/press/press/press/press/press-releases/2018/2018/Wolfspeed builds a new large-scale SiC factory in Germany, production begins in 2017, Nikkei Crosstech, 2023/2/28: https://xtech.nikkei.com/atcl/nxt/news/18/14642/ 8.Infineon收购了硅碳化物专家Siltechtra,Infineon,2018/12/7:https://www.infineon.com/cms/cms/cms/jp/jp/about-infineon/press/press/press/press/press-releases/2018/2018/2018/Infineon通过GT Advanced Technologies,Infineon,2020/11/9:https://wwwww.infineon.com/cms/cms/cms/jp/jp/about-infineon/ press/press/press/press/press/2020/infxx20202011-2011-2011-2011-014.html 10。有关电力半导体的SIC外延晶片:与Infineon Technologies签署的销售和联合开发协议,Showa Denko,2021年5月6日:https://wwwwww.resonac.com/jp/
图 1 DEMCs 被 PhICl 2 和 H 2 还原可逆氧化的示意图。经参考文献 [34] 许可改编。版权归 2017 美国化学学会所有。与摘录材料相关的更多许可应直接向 ACS 索取。
• 制造商等因交付的产品存在缺陷,导致他人生命、身体或财产受到损害的,应承担赔偿责任(《产品责任法》第 3 条)。第 2 条) • “缺陷”是指产品缺乏“通常应当具备的安全性”(《产品责任法》第2条第2款)
(8)其他 a. 如果需要重新投标,将立即进行。但是,如果通过邮寄投标,则投标将于 2024 年 7 月 31 日星期三下午 1:15 执行。 (一)邮寄投标:将投标表放入写有标题的小信封内并密封。然后将此表和资格审查结果通知书副本放入标有“(投标标题)附有投标表”的信封内,并通过挂号信(简单挂号信也可以)于 2024 年 7 月 25 日星期五下午 5 点之前寄送至第 324 会计中队承包团队。在这种情况下,请拨打下面列出的人员以确认消息已到达。 如需重新投标,投标必须于 2024 年 7 月 30 日星期二中午之前到达第 324 会计中队承包团队。 双方当事人签字、盖章即为合同成立。但中标人收到通知后,可不再签订合同。 如果您代表他人竞标,则必须提交授权委托书。 有关招标的询问:1016 Shukuume,Chitose,Hokkaido,066-8577,日本地面自卫队,Higashi Chitose Garrison,第324会计单位,合同部分(联系:Kobori:Kobori:Kobori)日本的Higashi chitose Garrison地面自卫力量(联系:KIDO),电话:0123-23-5131(分机3324)(9)公告的地点和期间发布:(a)发布的地点:(a)Higashi-Chitose,Higashi-Chitose,Sapporo,Sapporo和Shimamamatsu Garrison Carking tobles tobles toble toble norder corment B. ,2024年7月12日 - 2024年7月26日,星期五
两种互补方法被广泛用于研究斑马鱼的基因功能:诱导基因突变(通常使用靶向核酸酶,例如 CRISPR/Cas9)和抑制基因表达(通常使用吗啉寡聚体)。这两种方法都不完美。吗啉 (MO) 有时会产生脱靶或毒性相关效应,这些效应可能会被误认为是真正的表型。相反,基因突变体可能会受到补偿,或者由于泄漏(例如使用隐蔽剪接位点或下游 AUG)而无法产生无效表型。当观察到突变体和吗啉诱导的(变形)表型之间的差异时,对此类表型的实验验证将变得非常耗费人力。我们已经开发出一种简单的遗传方法来区分真正的变形表型和由于脱靶效应而产生的表型。我们推测 5′ 非翻译区内的插入/缺失不太可能对基因表达产生显着的负面影响。在 MO 靶位点内诱发的突变将产生吗啉代折射等位基因,从而抑制真正的 MO 表型,同时保留非特异性表型。我们在具有独有合子功能的基因 tbx5a 和具有强烈母体效应的基因 ctnnb2 上测试了这一假设。我们发现吗啉代结合位点内的插入/缺失确实能够抑制合子和母体形态表型。我们还观察到,此类插入/缺失抑制吗啉代表型的能力确实取决于缺失的大小和位置。尽管如此,使母体和合子基因中的吗啉代结合位点发生突变可以确定形态表型的特异性。
将大型 DNA 序列精确插入基因组的技术对于各种研究和治疗应用至关重要。大型丝氨酸重组酶 (LSR) 可以介导多千碱基 DNA 序列的直接、位点特异性基因组整合,而无需预先安装着陆垫,但目前的方法存在插入率低和脱靶活动率高的问题。在这里,我们提出了一个全面的工程路线图,用于联合优化 DNA 重组效率和特异性。我们结合定向进化、结构分析和计算模型来快速识别附加突变组合。我们通过供体 DNA 优化和 dCas9 融合进一步提高了性能,从而实现了同时招募目标和供体。顶级工程 LSR 变体在内源性人类基因座上实现了高达 53% 的整合效率和 97% 的全基因组特异性,并有效整合大型 DNA 货物(测试高达 12 kb),以在具有挑战性的细胞类型(包括非分裂细胞、人类胚胎干细胞和原代人类 T 细胞)中稳定表达。这种合理设计 DNA 重组酶的蓝图使得精确的基因组工程成为可能,而不会产生双链断裂。