我们开发了一种非标准的原子钟概念,其中黑体辐射偏移 (BBRS) 及其温度波动可以显著抑制(抑制一到三个数量级),而与环境温度无关。抑制基于这样一个事实:在具有两个可访问时钟跃迁(频率为 ν 1 和 ν 2 )且暴露于相同热环境的系统中,存在一个“合成”频率 ν syn ∝ ( ν 1 − ε 12 ν 2 ),该频率基本不受 BBRS 的影响。例如,对于 171 Yb +,可以创建一个时钟,其中 BBRS 可以在接近室温(300 ± 15 K)的较宽间隔内被抑制到 10 − 18 的分数水平。我们还提出了一种使用稳定在 ν 1 和 ν 2 频率的光频率梳发生器来实现我们的方法。这里频率 ν syn 作为梳状谱的组成部分之一产生,可以用作原子标准。
1个技术灾难的例子包括1986年的切尔诺贝利核事故,2011年由地震和海啸引起的2011年福岛核电站灾难以及2020年贝鲁特港口的武器店的爆炸。2个受位移影响的社区(DAC)包括居住在发生内部流离失所的地区的任何人,可能包括IDP,主持人社区成员,难民,返回者,前战斗人员或其他人的生活条件受到IDP的影响。该术语鼓励一种基于社区和基于区域的流离失所的方法。
toehold介导的链位移的单分子力光谱Andreas Walbrun 1,*,Tianhe Wang 2,*,Michael Matthies 2,Petršulc2,3,Friedrich C. Simmel 2,+ Matthias Rief,Matthias Rief 1慕尼黑技术大学生物科学系综合蛋白质科学中心(CPA),Ernst-Otto-Fischer-STR。8,85748德国Garching。 电子邮件:matthias.rief@mytum.de 2。 慕尼黑技术大学,TUM自然科学学院,生物科学系,AM COULOMBWALL 4A,85748 GARCHING,德国。 电子邮件:simmel@tum.de 3。 亚利桑那州立大学生物设计学院的分子科学和分子设计与生物仪中心,美国亚利桑那州南卡利斯特大街1001号,美国亚利桑那州坦佩市85281,美国 *这些作者同样贡献:安德烈亚斯·沃尔布伦(Andreas Walbrun) (TMSD)在动态DNA纳米技术中广泛使用,并且是多种基于DNA或RNA的反应电路的基础。 以前的研究通常依赖于散装荧光测量值来研究TMSD的动力学,该动力学仅提供有效的,散装平均的反应速率,并且无法在单个分子甚至碱基对的水平上解决该过程。 在这项工作中,我们使用单分子力光谱(SMF)探索单分子水平的链位移过程的动力学,并具有由最先进的粗粒元模拟支持的光学陷阱。 此外,我们使用力研究了DNA入侵RNA的动力学,这一过程很少发生力。8,85748德国Garching。电子邮件:matthias.rief@mytum.de 2。慕尼黑技术大学,TUM自然科学学院,生物科学系,AM COULOMBWALL 4A,85748 GARCHING,德国。电子邮件:simmel@tum.de 3。亚利桑那州立大学生物设计学院的分子科学和分子设计与生物仪中心,美国亚利桑那州南卡利斯特大街1001号,美国亚利桑那州坦佩市85281,美国 *这些作者同样贡献:安德烈亚斯·沃尔布伦(Andreas Walbrun) (TMSD)在动态DNA纳米技术中广泛使用,并且是多种基于DNA或RNA的反应电路的基础。 以前的研究通常依赖于散装荧光测量值来研究TMSD的动力学,该动力学仅提供有效的,散装平均的反应速率,并且无法在单个分子甚至碱基对的水平上解决该过程。 在这项工作中,我们使用单分子力光谱(SMF)探索单分子水平的链位移过程的动力学,并具有由最先进的粗粒元模拟支持的光学陷阱。 此外,我们使用力研究了DNA入侵RNA的动力学,这一过程很少发生力。亚利桑那州立大学生物设计学院的分子科学和分子设计与生物仪中心,美国亚利桑那州南卡利斯特大街1001号,美国亚利桑那州坦佩市85281,美国 *这些作者同样贡献:安德烈亚斯·沃尔布伦(Andreas Walbrun) (TMSD)在动态DNA纳米技术中广泛使用,并且是多种基于DNA或RNA的反应电路的基础。以前的研究通常依赖于散装荧光测量值来研究TMSD的动力学,该动力学仅提供有效的,散装平均的反应速率,并且无法在单个分子甚至碱基对的水平上解决该过程。在这项工作中,我们使用单分子力光谱(SMF)探索单分子水平的链位移过程的动力学,并具有由最先进的粗粒元模拟支持的光学陷阱。此外,我们使用力研究了DNA入侵RNA的动力学,这一过程很少发生力。通过探测toehold结构的发夹的末端,我们可以通过微秒和纳米分辨率实时触发和观察TMSD。使用微流体测定法,我们将发夹暴露于触发链的溶液中,我们发现在负载下,TMSD的进行非常迅速,单步时间为1 µs。将不匹配引入入侵者序列使我们能够调节稳定性,以使入侵和重新染色在均衡中也发生,即使在负载下也是如此。这使我们能够在单个分子上研究数千个入侵/入侵事件,并分析入侵过程的动力学。将我们的发现推送到零载荷,我们发现DNA入侵DNA的单步速度比入侵RNA快的速度快四倍。我们的结果揭示了序列效应对TMSD过程的重要性,并且对于核酸纳米技术和合成生物学的广泛应用至关重要。关键字:肋骨调节器,脚趾介导的链位移,分支迁移,单分子力光谱
nist.gov › 文档 PDF 2022年12月24日 — 2022年12月24日 使用现有技术并促进工业和工业领域的技术创新... 标准参考材料的研究领域很广泛。
根据几种机制下的特殊主题)以及该工作是否是一般理论,一般评论,概况或参数表,对现有工作的评论,一般实验测量技术的研究,
图 2:平台调整前测量位移的示例图(a)和基本优化后测量位移的示例图(b)。前者和后者情况下测量信号与标称波形的偏差分别放大了 200 倍和 1000 倍。
图 2:平台调整前测量位移的示例图(a)和基本优化后测量位移的示例图(b)。前者和后者情况下测量信号与标称波形的偏差分别放大了 200 倍和 1000 倍。
该讲座系列概述了计算机视觉技术的最新进展,因为它们适用于民用基础设施条件评估问题。特别是在计算机视觉,机器学习和结构工程领域的相关研究合成,以提供新课程。所涵盖的主题分为三个主要类别:监视应用程序,空间测量应用程序和检查应用程序。讨论的监视应用程序包括应变和位移的静态测量,以及模态分析的位移的动态测量。空间测量应用包括3D重建资产重建的运动和摄影测量的结构。所涵盖的检查应用程序包括计算机视觉和深度学习方法,用于识别诸如结构组件,表征本地和全球可见损害以及检测参考图像的变化的上下文。
我们研究了通过不确定的因果顺序增强的量子计量学,证明了在连续变量系统中估计两个平均位移乘积的二次优势。我们证明,没有任何以固定顺序使用位移的设置能够使均方根误差消失得比海森堡极限 1 =N 更快,其中 N 是影响平均值的位移数。与此形成鲜明对比的是,我们表明,以两种替代顺序的叠加探测位移的设置产生的均方根误差以超海森堡缩放 1 =N 2 消失,我们证明这是所有具有确定因果顺序的设置的叠加中最优的。我们的结果开启了以不确定顺序探测量子过程的新测量设置的研究,并提出了对正则对易关系的增强测试,并可能应用于量子引力。
(非会员),加利福尼亚大学,加利福尼亚州戴维斯市。——本研究的目的是调查端部边界条件对固体推进剂火箭发动机振动特性的影响。此前,在文献中,解决方案是基于无限长圆柱体的。这些解决方案仅产生有限圆柱体的某些可能的端部边界条件集,但不是那些考虑过的(即固定在所有边界上的)。该方法包括选择一系列具有未知系数的函数。每个项都满足控制微分方程和轴向位移的边界条件。径向位移的边界条件通过正交化程序近似。该方法产生一个特征值矩阵,其系数是频率的超越函数。最终解决方案的精度取决于径向位移边界条件的满足程度。通过使用系列中的 20 个项,发现该程序收敛,并且实现了足够的精度。通过比较两种方法获得的结果,讨论了基于无限圆柱体的更简单方法的局限性。