作为《联合国气候变化框架公约》(UNFCCC)和《加拿大生物多样性公约》(UNFCCC)的一项聚会,加拿大致力于停止和逆转生物多样性损失,到2030年至少保护30%的土地和海洋,并将到2030年的排放量减少40至45%,并在2030年将其降低到2050年,并降低了2050年5个。在这两个公约下,各方都认识到,除了远离化石燃料外,自然保护是气候变化解决方案不可或缺的一部分。
在海上环境中,重力和磁场的准确建模对于检测和表征水下物体至关重要,范围从低到高磁目标,例如未爆炸的军械(UXO),沉船和地质特征。我们使用COMSOL多物理学开发了一个沙盒环境,该环境允许对复杂的地球物理传感进行精确的创造和操纵。此环境可以详细模拟融合各种目标属性和环境条件的潜在字段,以生成用于ML训练的合成数据集。
摘要:在本文中,研究了三种典型的操作模式,即短路断层,负载变化和化学能量存储对光伏异步互连后区域功率网格的频率的频率,并以不同的穿透比为北部亨南省的功率电网,作为研究对象。发现,随着光伏穿透比的增加,系统频率的最大值和爆发幅度逐渐增加,并且河北河北的功率网系统变得越来越稳定。随着渗透率的增加,相应节点上系统频率的峰值逐渐增加,并且山谷值逐渐下降。随着负载的增加,频率曲线的峰值逐渐增加,山谷值逐渐下降。当光电子通过化学能量存储连接到网格时,在短路断层和负载变化操作过程中的系统稳定性显着改善。与存储前的相比,存储后系统的频率幅度减少到原始的大约十分之一。 与存储前的情况相比,当负载变化时,系统的频率幅度降低到原始的大约四分之一。相比,存储后系统的频率幅度减少到原始的大约十分之一。与存储前的情况相比,当负载变化时,系统的频率幅度降低到原始的大约四分之一。
拜占庭可靠的广播是分布式计算中的一个基本问题,在过去的几十年中,它经过了态度。最新的算法主要是基于共享广播消息的编码片段的方法,当消息大小超过网络大小时产生渐近最佳的通信复杂性,这是在实践中经常遇到的条件。但是,遵循标准编码方法的算法至少产生3个间接费用,这可能已经成为带宽受限的应用程序的负担。最小化此间接费用是一个重要的目标,可以立即对使用可靠的广播例程作为构建块的协议。本文介绍了一种新的机制来降低通信和计算复杂性。提出了两种算法,这些算法采用了这种机制在异步网络中可靠地广播消息,其中少于三分之一的节点是拜占庭的。第一个算法将间接因子降低到2,如果发件人诚实,则具有3个时间复杂性,而第二算法则在没有等值状态的情况下达到具有相同高架因子的最佳时间复杂性为2。此外,提出了针对现实世界实现的优化,在正常操作下将开销因子降低到3/2。最后,证明了一个下限,对于一类可靠的广播算法,无法实现低于3 /2的高架因子。
摘要 - 社区微电网中的FAIR成本分配仍然是一个重大挑战,因为多个参与者之间具有不同负载概况,分布式能源资源和存储系统的复杂相互作用。传统的成本分配方法通常无法充分解决参与者贡献和收益的动态性质,从而导致成本分配不平等,并降低了参与者的满意度。本文提出了一个新颖的框架,将多目标优化与合作游戏理论整合在一起,以进行公平有效的微电网操作和成本分配。所提出的方法结合了混合组合线性编程,以最佳资源调度与沙普利价值分析,以进行公平的收益分配,从而确保系统效率和参与者满意度。在六个不同的操作场景中使用现实世界数据对该框架进行了验证,这表明技术和环保性能都有显着改善。结果表明,通过有效的储存集成,太阳能利用率从7.8%降低到62.6%,高峰降低到114.8%,并且每天的合作收益最高为$ 1,801.01。基于沙普利价值的分配实现了平衡的福利成本分配,净头寸在不同的负载类别的范围从-16.0%到 +14.2%,以确保可持续的参与者合作。
在设计ECG系统时,主要问题之一是功耗,尤其是用于移动和可穿戴设备。本文提出了DTLC适用于使用具有负面偏置的双尾比较器的低端和高端应用程序,以改善使用Mentor图形建模的ECG信号监测系统。使用180nm CMOS技术的EDA工具集成的电路设计,以0.8V的电源提高了电力消耗,而不会下降汽车的性能。参数(包括功耗和功耗产品(PDP))以20 kHz的时钟频率从1.33μW降低到12.5 PW,而PDP降低到27°C时的0.251 AJ,可以改善功耗(PDP)。这些优化使所提出的比较器非常适合低功率,高性能ECG系统,尤其是在便携式和可穿戴的医疗设备中,在这些设备中,作为资源利用和交付的精度是重要因素。设计为公司的数字过渡提供了一个声音平台。心脏信号监测中的类似物到数字转换器(ADC)作为客户对医疗行业中节能声音元素的需求的增长。通过这种方式,功率释放效率得到提高,并且过多的能耗受到限制。根据准确性要求,拟议的比较器可以视为最适合现代心电图应用程序的比较。
为了保持可靠性,新英格兰电网将需要足够的资源来满足最严酷冬季条件下的峰值需求。但大多数冬季可能气候更温和,峰值会明显降低。在最恶劣的条件下保持可靠性所需的一些资源可能每隔几年才运行几天。将峰值需求降低到 EPCET 预测的高端以下将减少逐年所需的供应水平,并可能减少对此类资源的需求。