摘要:如今,现代粒子物理实验的前端电子设备需要非常精确的时钟信号,以供读取链中的不同元素。时钟分配系统,模拟和数字转换器的时间,千兆串行链路是需要抖动非常低的时钟信号的组件的示例。拟议的项目旨在开发新的辐射耐受性相锁环(PLL)IP块,用于抖动低于10 ps的时钟信号生成,或者在PLL控制中添加数字路径的情况下更好。该块将在现代TSMC 65 nm技术中开发,以允许其在EIC项目中考虑的未来读数ASIC中,尤其是在我们团体目前正在开发的SALSA MPGD读数芯片中。PLL也可以是具有相调整功能的低功率独立时钟扇出ASIC的基础,这对于特定的EIC前端应用可能需要。该项目将涵盖IP块的仿真和设计及其原型制作和验证。
铁电器已被证明是高性能非易失性记忆的出色基础,其中包括Memristors,这些记忆在人工突触和内存计算的硬件实现中起着至关重要的作用。在这里,据报道,新兴的范德华(Van der Wa)可用于成功实现异突触可变性(一种基本但很少模仿的突触形式),并实现在10 3的上方3级级别的较高量相似的较大范围的较大范围的抗性转换率,并实现抗性切换比。铁电α -In 2 SE 3通道的极化变化负责各种配对端子处的电阻切换。α-In 2 Se 3的第三个端子在PicoAmpere级别表现出对通道电流的非挥发性控制,从而赋予了picojoule读取能量消耗的设备,以效仿缔合性异突触性学习。模拟证明,可以在α -IN 2 SE 3中性网络中实现超级访问和无监督的学习方式,具有较高的图像识别精度。此外,这些弹性设备自然可以实现布尔逻辑,而无需其他电路组件。结果表明,Van der Waals铁电体在复杂,节能,受脑力启发的计算系统和内存计算机中的应用中具有很大的潜力。
摘要:无线传感器网络和物联网受益于近年来功耗方面的进步,以实现智能控制实体。电池技术的类似进步使这些系统变得自主。然而,这种方法不足以满足现代应用的需求。为这些传感器供电的另一种解决方案是使用其环境中可用的能量,例如热能、机械振动、光能或无线电频率。然而,传感器通常放置在功率密度较低的环境中。本研究调查了与其他来源相比的无线电频率能量收集。在展示了在宽频带上收集能量的潜力后,进行了一项统计研究,以确定城市环境和农村地区的射频功率密度。多频带射频收集器系统旨在收集多个频带中的能量,以显示何时有多个射频源可用。当系统设计为在宽频带上运行时,可以增加收集的能量量。在本研究中,使用高级设计软件 (ADS) 制作了为无线传感器供电的多频带射频能量收集器。根据设计结果,所提出的能源收集方案在 GSM900 和 GSM1800 频段上效果更好。 关键词:能源收集器;无线网络;无线电源 1 引言 如今,监控我们所处环境的需求越来越重要,这使我们能够管理自己的行为;一个典型的例子就是天气预报。 现代传感器是小型、独立的设备,可对其周围环境进行简单的测量。 它们用于观察许多物理现象,如温度、压力、亮度等,这对于许多工业和科学应用至关重要。 传感器的作用是将物理量转换为可利用的电量,例如计算机可用的数字信号。 接口可以通过有线链路或无线方式进行,多年来一直如此。 同时,微电子和微机械领域的最新进展使得能够以合理的成本生产体积为几立方毫米的组件,同时功耗要求不断降低。微型传感器可以制成一个完整的嵌入式系统,部署多个微型传感器以自主方式收集环境数据并将其传输到一个或多个收集点,从而形成无线传感器网络 (WSN)。为这些传感器供电的传统方式是使用电池,但电池的能量有限,耗尽时需要更换。更换电池的维护成本可能很高,尤其是对于位于难以接近位置的传感器。在这种情况下,另一种自供电方式将是有利的,而能量收集则提供了这一潜力。1.1 能量收集 用于为传感器供电的能量收集系统由五个不同的模块组成,如图 1 所示。系统的第一级是能量传感器。它提供物理量作为输出,可用作能量转换级的输入。传感器的工作原理基于物理或化学效应。主要有六类:热、机械、光学、磁、电和化学 [1]。
摘要:量子点蜂窝自动机(QCA)技术被认为是电路实现的可能替代方法,其效率,集成密度和开关频率。多路复用器(MUX)可以被认为是设计QCA电路的合适候选者。在本文中,提出了两个不同的能量效能2×1 Mux设计的结构。这些Muxes在功耗方面的表现优于最佳现有设计,大约降低了26%和35%。此外,与可用设计相比,还可以实现类似或更好的性能因素,例如面积和潜伏期。这些MUX结构可以用作基本能量良好的构建块,以替换QCA中多数的结构。所提出的Muxes的可伸缩性非常出色,可用于能量良好的复合QCA电路设计。
摘要。高性能子伏电流镜被广泛用于构建混合模式低功率VLSI系统。电流镜的性能取决于其关键参数,其中包括较大的操作范围,低输入合规性电压,宽秋千,大带宽以及非常低的输入和非常高的输出电阻。在本文中,显示了高性能低功率电流镜的设计。所提出的电流镜基于电压跟随器,使电流镜在低压下工作。为改善输入输出电阻,提出的电流镜由超级晶体管和超级cascode阶段使用。在微电瓦范围内的功率耗散时,直到1mA达到了最小误差的当前镜像。所达到的带宽为2.1 GHz,低输入和高输出电阻分别为0.407 ohm和50 giga ohm。在本文中还显示了过程角,温度分析和提议的电流镜的噪声分析。使用0.18 UM技术的HSPICE以0.5 V的双电源电压进行完整分析。
如今,红外热仪越来越流行,并在各个应用领域中使用,例如环境保护,土木工程,医学,空间,军事和科学。这是半导体技术取得重大进展的结果,导致低噪声,高度积分和节能的集成电路。应用领域似乎是无限的,因为在高于0k≈–273°C的温度下的每个物体都会发出电磁辐射[1-4,7,8]。通常观察到的图像在可见的光谱中被观察。通常,更有趣和更有用的是有关电磁辐射的“无形”带中获得的对象的其他信息[3,4]。这样的辐射是红色辐射,它构成了电势波长1 与热成像相机的检测器不同,人眼本身无法检测到,更不用说测量辐射的波长了。 红外探测器是热成像摄像头的主要元素。 提出的项目使用由无定形硅(A-SI)制成的LWIR光谱范围内运行的微量光度检测器。 目前,还有其他可用的检测器。 在许多情况下,在低温下,有光子检测器在低温下运行[2]。 直到2000年,只生产了用液氮冷却冷却的探测器,毛发系统和stirling泵。 在热ima- 中与热成像相机的检测器不同,人眼本身无法检测到,更不用说测量辐射的波长了。红外探测器是热成像摄像头的主要元素。提出的项目使用由无定形硅(A-SI)制成的LWIR光谱范围内运行的微量光度检测器。目前,还有其他可用的检测器。在许多情况下,在低温下,有光子检测器在低温下运行[2]。直到2000年,只生产了用液氮冷却冷却的探测器,毛发系统和stirling泵。在热ima-
摘要。本文分析了在乌兹别克斯坦使用风能的可能性,并研究了使用储能设备在该地区建造可靠的电力供应的可能性。在风弱的区域中,已经提出了首先存储风能然后产生交替电力的设备。已经分析了储能系统,建议在乌兹别克斯坦共和国可再生能源组成的能源系统中使用机械能量存储系统。已经注意到,此类设备在远离集中电源的区域特别有效,那里的电源不可用或可靠性较低。使用存储系统中的弹性绳编织的机械能量存储设备的实验模型,并给出了其设计方程式。使用此存储系统的可能性和必要性在我国高度重视。尽管设备的原始模型的功率很低,但可以通过在该区域进行研究并改变弹性线的类型和组成来实现高结果。本文介绍了有关使用机械弹性绳索开发机械能量存储设备新设计的初步研究结果。
摘要:通过闭环植入式设备对难治性癫痫的处理,这些设备对通过药物释放或电刺激作用的癫痫发作是一种极具吸引力的选择。对于这种可植入的医疗设备,有效和低能消耗,小规模和有效的加工体系结构至关重要。为了满足这些要求,通过卷积神经网络(CNN)对大脑信号进行分析和分类进行癫痫发作检测是一种有吸引力的方法。这项工作为CNN提供了用于在超低功率微处理器上运行的癫痫发作检测。在MATLAB中实现并优化了CNN。此外,在具有RISC-V架构的GAP8微处理器上还实施了CNN。提出的CNN的培训,优化和评估基于CHB-MIT数据集。CNN达到的中位灵敏度为90%,高度高99%以上,对应于中位误报率为每小时6.8 s。在微控制器上实施CNN后,达到了85%的灵敏度。1 s的脑电图数据的分类为t = 35 ms,平均功率为p≈140µW。拟议的检测器在功耗方面优于相关的方法6。通过记录癫痫大鼠,对所提出的基于CNN的检测器的普遍适用性进行了验证。这结果使未来的医疗设备用于癫痫治疗。
摘要提出了标准0.18- µm CMOS技术的超低功率子串电压参考电路。利用V Be和V Th的负温度特性,一种新型的自偏自偏电路结合了寄生BJT和MOSFET的组合,用于实现纳米瓦特功率调整的温度补偿的子带电压参考。测量结果表明,提议的电路提供的平均参考电压为261.6 mV,变化系数为0.86%。在27℃的供应电压范围为0.9 V至1.8 V,线调节(LR)为0.26%/V,电源排斥比(PSRR)为100 Hz时的电源排斥比(PSRR)为-49 dB。通过一次性进行修剪,在一组18个样本上进行的测量结果显示,温度平均温度平均温度为25.9 ppm/ o,温度范围为-20至100°C,C。电源耗散为1.8 nW,电源电压为0.9 v在27°C下为0.9°C。CHIP面积为0.0038 mm 2。关键字:超低功率,子频率电压参考,CMOS,温度系数,芯片区域分类:集成电路(内存,逻辑,逻辑,模拟,RF,传感器)
摘要提出了在标准0.18-μmCMOS技术中制造的超低功率子带电压参考电路。利用V BE和V Th的负温度特性,使用寄生BJT和MOSFET的组合的新型自偏的电路构型用于实现纳米瓦特功率派遣的温度补偿的子频带电压参考。测量结果表明,提议的电路提供的平均参考电压为261.6 mV,变化系数为0.86%。线调节(LR)为0.26%/V,在27°时的电源电压范围为0.9 V至1.8 V,电源排斥比(PSRR)为-49 dB时为-100 Hz。在一次性修剪的情况下,在一组18个样品中执行的测量结果显示,温度系数的平均温度系数为25.9 ppm/℃,温度范围为-20至100°。功率耗散为1.8 NW,电源电压为0.9 V时为27℃。芯片面积为0.0038毫米2。关键词:超低功率,子频率电压参考,CMOS,温度系数,芯片区域分类:集成电路(内存,逻辑,模拟,RF,传感器)