摘要。在许多应用中引起了硅化的形成,尤其是在微电子中的接触形成和互连。在此主题上发表了一些评论,本章的目的是通过重点关注新的实验结果来提供这些评论的更新。本章在理解主要机制(扩散/反应,成核,横向生长…)方面给出了一些进展(即在4至50 nm之间)。提出了有关硅质形成机制的最新实验结果,并将其与模型和/或模拟进行比较,以提取与反应性扩散相关的物理参数。这些机制包括成核,横向生长,扩散/界面控制生长以及扩散屏障的作用。几种技术的组合(包括原位技术(XRD,XRR,XPS,DSC)和高分辨率技术(APT和TEM)被证明是必不可少的,这对于在薄膜中的固态反应中获得了理解,并更好地控制这些反应以在微电机设备或其他应用程序中接触或其他应用。
摘要 — 本文提出了一种基于宽带隙 RF 技术设计低噪声放大器的原创方法。这些 LNA 能够承受高电磁信号(如电子战中使用的信号),同时提供高探测率。该研究介绍了基于相同策略的单级 LNA 和两级 LNA 的原始设计程序。这些自重构 LNA 可以从高探测率模式(低 NF)切换到高线性模式(高输入压缩模式 IP 1dB )。该设计策略与稳健的 LNA 设计进行了比较,后者使用更大的晶体管尺寸来提高线性度,但代价是 NF 略有下降。在放大器输入端,RF 步进应力结果已达到 30 dBm,没有任何破坏,并提供稳定的 S 参数和噪声系数。
b'we考虑了与随机噪声(LPN)问题的经典学习奇偶的稀疏变体。我们的主要贡献是一种新的算法框架,它为学习稀疏平等(LSPN)问题和稀疏LPN问题提供了针对低噪声的学习算法。与以前的LSPN和稀疏LPN的方法不同(Grigorescu等人,2011年;英勇,2015年; Karppa等。,2018年; Raghavendra等。,2017年; Guruswami等。,2022),该框架具有一个简单的结构,而无需快速矩阵乘法或张量方法,因此其算法易于实现并在多项式空间中运行。令n为尺寸,k表示稀疏性,\ xce \ xb7是噪声率,使每个标签都会被概率\ xce \ xb7串起。是计算学习理论中的基本问题(Feldman等人。,2009年),学习与噪声的稀疏平等(LSPN)假定隐藏的平等是K -Sparse,而不是潜在的密集载体。虽然简单的枚举算法采用n k = o(n/k)k时间,但以前已知的结果静止图至少需要n k/2 = \ xe2 \ x84 \ xa6(n/k)k/2 k/2对于任何噪声率\ xce \ xb7(Grigorescu等人(Grigorescu等)),2011年;英勇,2015年; Karppa等。,2018年)。我们的框架提供了LSPN算法在时间O(\ XCE \ XB7 \ XC2 \ XC2 \ XB7 N/K)K中,对于任何噪声率\ XCE \ XB7
已符合其他经典技术,例如电容 - 电压或深度瞬态光谱测量值,低频噪声测量是研究材料或设备质量和性能的最敏感工具之一[1]。例如,噪声测量值允许对传感器应用[2]或对半导体设备的深层光谱进行比较[3],并确定某些技术步骤或技术对设备性能降解的影响[4-7]。尽管有所有这些优点,但该技术的一个局限性很难删除所有外部低频噪声源,以确保所测量的噪声仅来自测试的设备或材料。在材料表征的情况下,众所周知,四探针配置足以消除DC甚至白噪声测量中的接触贡献。由于电压或电流触点可能会造成噪声贡献,因此1/F噪声不是这种情况。
摘要 本文介绍并分析了一种专用于 2.4 GHz 无线传感器网络 (WSN) 应用的多模式低噪声放大器 (LNA) 的设计。所提出的无电感器 LNA 采用 28 nm FDSOI CMOS 技术实现,基于共栅极配置,其中嵌入共源级以提高电路的整体跨导。该 LNA 经过专门设计和优化,可解决三种操作模式。重新配置是通过电流调谐以及切换放大晶体管的背栅极来完成的。所提出的实现方式可使品质因数 (FOM) 在不同操作模式下保持恒定。在低功耗模式下,LNA 仅消耗 350 uW。它实现了 16.8 dB 的电压增益 (G v ) 和 6.6 dB 的噪声系数 (NF)。在中等性能模式下,增益和噪声系数分别提高到 19.4 dB 和 5.4 dB,功耗为 0.9 mW。在高性能模式下,增益最大,为 22.9 dB,噪声系数最小,为 3.6 dB,功耗为 2 mW。输入参考三阶截点 (IIP3) 所表示的线性度恒定,接近 -16 dBm。报道的 LNA 仅占用 0.0015 mm 2 。
解锁光谱对纳米级的真正潜力需要开发稳定和低噪声激光源。在这里,我们开发了一个基于由飞秒纤维激光器泵送的全正常分散纤维的低噪声超脑(SC)来源,并显示出高分辨率,在近芳烃(NIR)区域的频谱分辨出近场测量。具体来说,我们探讨了对无孔径散射型扫描近场光学显微镜(S-SNOM)的减少噪声要求,包括SC的固有脉冲到脉冲波动。我们使用SC的光源来展示第一个NIR,频谱解决的S-SNOM测量,这种情况是最先进的商业SC来源太嘈杂而无法有用。我们在单个测量中绘制了在波长区域的1.34–1.75μm波长区域中表面等离子体偏振子(spp)波的传播,从而实验表征了NIR中SPP的分散曲线。我们的结果代表了一种技术突破,有可能在近场研究中实现低噪声SC来源的广泛应用。
(17)
• QML P 类抗辐射性能保证 (QMLP-RHA) 等级 • 采用小型 SOT-23 封装 • 辐射性能: – 单粒子闩锁 (SEL) 免疫 65MeV-cm 2 /mg – 总电离剂量 (TID) 抗辐射性能保证 (RHA) 高达 100krad (Si) • 支持国防、航空航天和医疗应用 – 单一受控基线 – 一个制造、装配和测试站点 – 金线 – NiPdAu 引线表面涂层 – 可在军用 (-55°C 至 125°C) 温度范围内使用 – 延长产品生命周期 – 产品可追溯性 – 增强型塑封材料,降低排气量 • 低失调电压:±125µV • 低噪声:1kHz 时为 10.8nV/√Hz • 高共模抑制:130dB • 低偏置电流:±10pA • 轨到轨输入和输出 • 宽带宽:4.5MHz GBW • 高压摆率:21V/µs • 高电容负载驱动:1nF • 多路复用器友好型/比较器输入 • 低静态电流:每个放大器 560µA • 宽电源电压:±1.35V 至 ±20V,2.7V 至 40V • 强大的 EMIRR 性能:输入和电源引脚上的 EMI/RFI 滤波器
(1)超出绝对最大评级下列出的压力可能会对设备造成永久损害。这些仅是应力等级,这并不意味着该设备在这些条件下在建议的操作条件下指示的条件以外的任何其他条件。长期暴露于绝对最大评级条件可能会影响设备的可靠性。(2)+和in-中的输入引脚与两个端子之间的反平行二极管相连。大于0.5 V或小于–0.5 V的差分输入信号必须限制为10 mA或更小。(3)输入端子被二极管链接到电源轨道(VS+,VS-)。输入信号大于0.5 v或更少或更少的供应轨必须被限制为10 mA或更少。(4)v S / 2的短路。< / div>
图表 图 1 接收器架构 [7] .................................................................................................... 6 图 2 用于生成 S 参数的输入和输出端口。 [8] ........................................................... 6 图 3 体 CMOS 与 FD-SOI 结构 [9] .............................................................................. 8 图 4 共栅极放大器(左)共源放大器(右) ........................................................ 10 图 5 级联电感退化 CS LNA 原理图 ........................................................................11 图 6 测试台设置 ......................................................................................................................... 14 图 7 Cpad 的参数扫描 ............................................................................................................. 15 图 8 理想元件的 S11 行为 ............................................................................................................. 16 图 9 所需频带的 S21 行为宽度 ............................................................................................................. 17 图 10 S21 带宽 ............................................................................................................................. 18 图 11 理想元件的噪声系数 ............................................................................................................. 19 图 12 增益(单位为 dBm) ............................................................................................................. 20 图 13 非理想元件的 S11 行为 ............................................................................................................. 21 图 14 非理想元件的 S21 行为........................................................................... 22 图 15 S21 带宽 ...................................................................................................................... 23 图 16 非理想元件的噪声系数 ...................................................................................................... 24 图 17 功率增益 ...................................................................................................................... 25 图 18 完整布局 ...................................................................................................................... 26 图 19 电阻器 MOSFET 和电容器的放大布局。 ............................................................. 27