特性和优点 ▪ 低噪声模拟信号路径 ▪ 通过新的 FILTER 引脚设置器件带宽 ▪ 响应阶跃输入电流,输出上升时间为 5 μs ▪ 带宽 80 kHz ▪ 总输出误差 1.5%(TA = 25°C) ▪ 小尺寸、扁平 SOIC8 封装 ▪ 1.2 mΩ 内部导体电阻 ▪ 从引脚 1-4 到引脚 5-8 的最小隔离电压为 2.1 kVRMS ▪ 5.0 V,单电源供电 ▪ 66 至 185 mV/A 输出灵敏度 ▪ 输出电压与交流或直流电流成比例 ▪ 工厂调整精度 ▪ 极其稳定的输出失调电压 ▪ 几乎为零的磁滞 ▪ 与电源电压成比例输出
图1:(a)Tesseract磁力计设计在30%玻璃填充的Torlon工程塑料的对称块中固定了六个微型低噪声赛车芯。这些赛道芯是由Miles等人(2022年)开发的,用准螺旋驱动绕组包裹,以调节核心的渗透性,然后用螺线管般的旋转旋转覆盖以感知调制信号。Tesseract的反馈线圈在相同的玻璃填充摩托底座上缠绕,以实现结构稳定性。这些反馈线圈(红色)以三个轴四轴Merritt线圈排列,该线圈在传感器内部产生了巨大的磁同质性区域。(b)Aut Build 80
MPPC是一种称为SIPM(硅光层流)的设备。这是一种新型的光子计数设备,由多个Geiger模式APD(Avalanche Photodiode)像素组成。这是一种具有出色的光子计数能力和低工作电压的光轴导导器,并且不受磁场的影响。S13360系列是用于精确度量的MPPC。MPPC继承了先前产品的出色低浮肿特性,并进一步提供了较低的串扰和较低的深度计数。它们适合精确测量,例如流式细胞仪,DNA测序仪,激光显微镜和荧光测量,需要低噪声特征。
固定频率PWM操作确保开关噪声频谱被限制在600kHz基波及其谐波内,从而允许轻松进行后置滤波以降低噪声。外部时钟同步功能允许更严格的噪声频谱控制。静态功耗小于1mW,可延长电池供电系统的工作时间。两个控制输入(ONA,ONB)允许通过单个瞬时按钮开关进行简单的按压、按压关闭控制,以及传统的开/关逻辑控制。MAX1709还具有可编程软启动和电流限制功能,可实现设计灵活性和最佳电池性能。最大RMS开关电流额定值为10A。有关具有较低电流额定值、较小尺寸和更低成本的设备,请参阅MAX1708数据手册。
轮子速度由运行在 32 位微处理器中的模型支持的 PI 环路控制,该微处理器在功率级使用低噪声高效四象限 PWM 方法。轮驱动电子设备包括热保护和过压保护电路。信号接口是 RS422/RS485 级别的标准异步 SCI。它可用于单全双工配置以及半双工总线架构。波特率可调至 1Mbaud。还提供冗余 CAN 总线接口。反作用轮设计保持模块化。通过改变转子几何形状、输入电压范围或通信协议,VRW 特性很容易适应客户需求。可以在扭矩控制模式或速度控制模式下灵活操作。这种反作用轮的标称在轨寿命超过 45,000 小时。
Signa Pet/MR是为希望宠物成像的无限潜力的医师和物理学家设计的。它基于基于lutetium的闪光灯(LBS)一种创新的MR兼容硅光电塑料(SIPM)技术。SIPMS解决了其他技术的局限性,提供了出色的TOF时正时分辨率,下一代光电倍增器的高增益和低噪声。磅晶体具有高光输出,快速的时机和停止功率以实现TOF PET。sipms由主动和被动(水冷却)热补偿仔细支撑。探测器位于3.0T磁铁的同中心,并提供25厘米的FOV。首次,LBS和SIPM的组合使Signa Pet/MR能够与3.0T MR成像同时执行TOF PET。
L3Harris 凭借 40 多年开发 AOM 设备和技术的经验,设计出能够以极高的精度控制捕获离子量子态的照明模块。这些子系统具有低噪声、低漂移和低串扰功能,现在可实现量子计算所需的多通道光束控制操作、原子钟和高级量子传感等应用的量子态操控以及增强型微加工。强大的多通道 AOM 照明模块需要单个紫外线 (UV)(典型值为 355 纳米)光束输入,并能够同时对 32 个单独光束的振幅和相位进行独立调制。它可实现基于离子阱的量子态操控所需的多量子比特状态转换和纠缠操作。
指导是从图像生成扩散模型中提取最佳性能的关键技术。传统上,在图像的整个采样链中都施加了恒定的引导权重。我们表明,指导显然在链的开始(高噪声水平)上是有害的,这在很大程度上是不必要的(低噪声水平),而仅在中间有益。因此,我们将其限制在特定的噪声水平范围内,从而提高了推理速度和结果质量。这个有限的指导间隔将Imagenet-512中的记录FID显着提高到1.81至1.40。我们表明,在不同的采样器参数,网络体系结构和数据集上,它在定量和质量上都是有益的,包括稳定扩散XL的大规模设置。因此,我们建议将指导间隔视为使用指导的所有扩散模型中的超参数。
在超导量子电路(例如量子位)中,信息以微波量子信号的形式处理和传输。在量子信息协议结束时,这些信号必须由室温电子设备记录。由于微波量子信号通常由很少的光子组成,因此必须放大它们才能达到合理的信噪比。因此,量子信号的低噪声放大至关重要。现代的低噪声mi-crowave放大器是建立在超导Josephson参数设备的基础上的,例如频率驱动的Josephson参数放大器(JPA),允许达到放大器的标准量子限制,甚至超越了它。当前的JPA是由超导量子干扰装置(Squid)与超导Coplanar波导谐振器相结合的。组合系统充当可调的非线性微波谐振器,其频率可以通过外部磁场在原位变化。机械类似物将是可变长度的摆,可以调整其本征频率。可以将非线性微波谐振器的可调节性通过在谐振频率的两倍的两倍上施加到参数上泵送JPA。这又可以导致出现在JPA处的弱量子信号的强大参数扩增。可以进一步利用相同的参数放大机制,以以挤压真空状态的形式生成真正的量子信号。在这种实践培训中,学生的使命是通过通过频道驱动的超导JPA进行实验研究量子量子限制的放大现象。This goal can be split in several parts: (i) analyze the magnetic field dependence of the JPA's resonance frequency via microwave transmission measurements with a Vec- tor Network Analyzer (VNA) and determine the JPA frequency modulation period in terms of the magnetic coil current, (ii) find a suitable working point for parametric amplification and record the corresponding resonance response, (iii) apply a microwave pump signal以适当的频率获得并测量实质性参数扩增的增益。